Suppr超能文献

缺氧临界点的反硝化和表型多样化的准备:NO 还原酶的用途 O 的多种角色。

Preparation for Denitrification and Phenotypic Diversification at the Cusp of Anoxia: a Purpose for NO Reductase Multiple Roles of O.

机构信息

Norwegian University of Life Sciencesgrid.19477.3c, Department of Chemistry, Biotechnology and Food Science, Ås, Norway.

Luminex, 's-Hertogenbosch, Netherlands.

出版信息

Appl Environ Microbiol. 2022 Nov 8;88(21):e0105322. doi: 10.1128/aem.01053-22. Epub 2022 Oct 17.

Abstract

Adaptation to anoxia by synthesizing a denitrification proteome costs metabolic energy, and the anaerobic respiration conserves less energy per electron than aerobic respiration. This implies a selective advantage of the stringent O repression of denitrification gene transcription, which is found in most denitrifying bacteria. In some bacteria, the metabolic burden of adaptation can be minimized further by phenotypic diversification, colloquially termed "bet-hedging," where all cells synthesize the NO reductase (NosZ) but only a minority synthesize nitrite reductase (NirS), as demonstrated for the model strain Paracoccus denitrificans. We hypothesized that the cells lacking NirS would be entrapped in anoxia but with the possibility of escape if supplied with O or NO. To test this, cells were exposed to gradual O depletion or sudden anoxia and subsequent spikes of O and NO. The synthesis of NirS in single cells was monitored by using an fusion replacing the native , and their growth was detected as dilution of green, fluorescent fluorescein isothiocyanate (FITC) stain. We demonstrate anoxic entrapment due to e-acceptor deprivation and show that O spiking leads to bet-hedging, while NO spiking promotes NirS synthesis and growth in all cells carrying NosZ. The cells rescued by the NO spike had much lower respiration rates than those rescued by the O spike, however, which could indicate that the well-known autocatalytic synthesis of NirS via NO production requires O. Our results bring into relief a fitness advantage of pairing restrictive expression with universal NosZ synthesis in energy-limited systems. Denitrifying bacteria have evolved elaborate regulatory networks securing their respiratory metabolism in environments with fluctuating oxygen concentrations. Here, we provide new insight regarding their bet-hedging in response to hypoxia, which minimizes their NO emissions because all cells express NosZ, reducing NO to N, while a minority express NirS + Nor, reducing NO to NO. We hypothesized that the cells without Nir were entrapped in anoxia, without energy to synthesize Nir, and that they could be rescued by short spikes of O or NO. We confirm such entrapment and the rescue of all cells by an NO spike but only a fraction by an O spike. The results shed light on the role of O repression in bet-hedging and generated a novel hypothesis regarding the autocatalytic expression via NO production. Insight into the regulation of denitrification, including bet-hedging, holds a clue to understanding, and ultimately curbing, the escalating emissions of NO, which contribute to anthropogenic climate forcing.

摘要

通过合成反硝化蛋白组适应缺氧会消耗代谢能量,而无氧呼吸每传递一个电子所消耗的能量比有氧呼吸少。这意味着严格的 O 抑制反硝化基因转录具有选择性优势,这种优势存在于大多数反硝化细菌中。在一些细菌中,通过表型多样化可以进一步最小化适应的代谢负担,通俗地称为“风险分摊”,其中所有细胞都合成一氧化氮还原酶(NosZ),但只有少数细胞合成亚硝酸盐还原酶(NirS),这在模式菌株 Paracoccus denitrificans 中得到了证明。我们假设缺乏 NirS 的细胞将被困在缺氧环境中,但如果提供 O 或 NO,它们有可能逃脱。为了验证这一点,我们将细胞暴露在逐渐耗尽 O 或突然缺氧以及随后的 O 和 NO 爆发中。通过使用替换天然的 融合来监测单个细胞中 NirS 的合成,并通过稀释绿色荧光异硫氰酸荧光素(FITC)染料来检测其生长。我们证明了由于电子受体剥夺而导致的缺氧捕获,并表明 O 爆发导致风险分摊,而 NO 爆发则促进所有携带 NosZ 的细胞中 NirS 的合成和生长。然而,由 NO 爆发拯救的细胞的呼吸速率比由 O 爆发拯救的细胞低得多,这可能表明通过 NO 产生的 NirS 的已知自动催化合成需要 O。我们的结果凸显了在能量有限的系统中,将限制性表达与普遍的 NosZ 合成相结合的适应性优势。 反硝化细菌已经进化出复杂的调控网络,以确保其在氧气浓度波动的环境中的呼吸代谢。在这里,我们提供了有关它们在缺氧条件下进行风险分摊的新见解,这最大限度地减少了它们的 NO 排放,因为所有细胞都表达 NosZ,将 NO 还原为 N,而少数细胞表达 NirS + Nor,将 NO 还原为 NO。我们假设没有 Nir 的细胞被困在缺氧环境中,没有能量合成 Nir,它们可以通过短时间的 O 或 NO 爆发来拯救。我们证实了这种捕获以及所有细胞被 NO 爆发拯救,但只有一部分被 O 爆发拯救。结果揭示了 O 抑制在风险分摊中的作用,并提出了一个关于通过 NO 产生的自动催化 表达的新假设。对反硝化作用的调控,包括风险分摊的认识,为理解和最终遏制导致人为气候强迫的不断增加的 NO 排放提供了线索。

相似文献

2
A bet-hedging strategy for denitrifying bacteria curtails their release of NO.反硝化细菌的一种避险策略会抑制其 NO 的释放。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11820-11825. doi: 10.1073/pnas.1805000115. Epub 2018 Nov 1.
5
Respiration and growth of R-1 with nitrous oxide as an electron acceptor.以氧化亚氮作为电子受体时 R-1 的呼吸和生长。
Microbiol Spectr. 2024 Jun 4;12(6):e0381123. doi: 10.1128/spectrum.03811-23. Epub 2024 Apr 22.

引用本文的文献

本文引用的文献

3
A bet-hedging strategy for denitrifying bacteria curtails their release of NO.反硝化细菌的一种避险策略会抑制其 NO 的释放。
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11820-11825. doi: 10.1073/pnas.1805000115. Epub 2018 Nov 1.
4
Exploring the Denitrification Proteome of PD1222.探索PD1222的反硝化蛋白质组。
Front Microbiol. 2018 May 29;9:1137. doi: 10.3389/fmicb.2018.01137. eCollection 2018.
9
The bioenergetic costs of a gene.一个基因的生物能量消耗
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5. doi: 10.1073/pnas.1514974112. Epub 2015 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验