一种调控细菌反硝化和 NO 排放的中心小 RNA 调控回路。
A Central Small RNA Regulatory Circuit Controlling Bacterial Denitrification and NO Emissions.
机构信息
School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
出版信息
mBio. 2019 Aug 6;10(4):e01165-19. doi: 10.1128/mBio.01165-19.
Global atmospheric loading of the climate-active gas nitrous oxide (NO) continues to increase. A significant proportion of anthropogenic NO emissions arises from microbial transformation of nitrogen-based fertilizers during denitrification, making microbial NO emissions a key target for greenhouse gas reduction strategies. The genetic, physiological, and environmental regulation of microbially mediated NO flux is poorly understood and therefore represents a critical knowledge gap in the development of successful mitigation approaches. We have previously mapped the transcriptional landscape of the model soil-denitrifying bacterium Here, we show that a single bacterial small RNA (sRNA) can control the denitrification rate of by stalling denitrification at nitrite reduction to limit production of downstream pathway intermediates and NO emissions. Overexpression of sRNA-29 downregulates nitrite reductase and limits NO and NO production by cells. RNA sequencing (RNA-seq) analysis revealed 53 genes that are controlled by sRNA-29, one of which is a previously uncharacterized GntR-type transcriptional regulator. Overexpression of this regulator phenocopies sRNA-29 overexpression and allows us to propose a model whereby sRNA-29 enhances levels of the regulator to repress denitrification under appropriate conditions. Our identification of a new regulatory pathway controlling the core denitrification pathway in bacteria highlights the current chasm in knowledge regarding genetic regulation of this pivotal biogeochemical process, which needs to be closed to support future biological and chemical NO mitigation strategies. NO is an important greenhouse gas and a major cause of ozone depletion. Denitrifying bacteria play vital roles in the production and consumption of NO in many environments. Complete denitrification consists of the conversion of a soluble N-oxyanion, nitrate (NO), to an inert gaseous N-oxide, dinitrogen (N). Incomplete denitrification can occur if conditions are prohibitive, for example, under conditions of low soil copper concentrations, leading to emission of NO rather than N Although enzymatically well characterized, the genetic drivers that regulate denitrification in response to environmental and physiological cues are not fully understood. This study identified a new regulatory sRNA-based control mechanism for denitrification in the model denitrifying bacterium Overexpression of this sRNA slows the rate of denitrification. This report highlights that there are gaps in understanding the regulation of this important pathway which need to be filled if strategies for NO mitigation can be rationally and carefully developed.
全球大气中活性气体一氧化二氮(NO)的负荷持续增加。人为 NO 排放的一个重要部分来自于反硝化过程中基于氮的肥料的微生物转化,这使得微生物 NO 排放成为温室气体减排策略的一个关键目标。微生物介导的 NO 通量的遗传、生理和环境调控还知之甚少,因此,这是成功开发减排方法的一个关键知识空白。我们之前已经绘制了模式土壤反硝化细菌的转录图谱。在这里,我们表明,单个细菌小 RNA(sRNA)可以通过阻止亚硝酸盐还原来使反硝化过程停滞,从而限制下游途径中间产物和 NO 的产生,从而控制的反硝化速率。sRNA-29 的过表达下调了亚硝酸盐还原酶的表达,并限制了细胞中 NO 和 NO 的产生。RNA 测序(RNA-seq)分析显示,有 53 个基因受到 sRNA-29 的调控,其中一个是以前未被描述的 GntR 型转录调节因子。该调节因子的过表达模拟了 sRNA-29 的过表达,使我们能够提出一个模型,即 sRNA-29 在适当条件下增强该调节因子的水平以抑制反硝化。我们发现了一种新的调控途径,该途径控制着细菌中核心反硝化途径,这凸显了目前在遗传调控这一关键生物地球化学过程方面的知识差距,需要缩小这一差距,以支持未来的生物和化学 NO 减排策略。NO 是一种重要的温室气体,也是臭氧消耗的主要原因。反硝化细菌在许多环境中对 NO 的产生和消耗起着至关重要的作用。完全反硝化包括将可溶性 N-氧阴离子硝酸盐(NO)转化为惰性气态 N-氧化物二氮(N)。如果条件不利,例如在土壤铜浓度低的情况下,不完全反硝化会发生,导致 NO 而不是 N 的排放。尽管在酶学上得到了很好的描述,但调节反硝化作用以响应环境和生理信号的遗传驱动力还不完全清楚。本研究在模式反硝化细菌中发现了一种新的基于调节 sRNA 的控制机制。该 sRNA 的过表达减缓了反硝化作用的速度。本报告强调,在理解这一重要途径的调控方面存在差距,如果要合理、谨慎地开发 NO 减排策略,就需要填补这些差距。
相似文献
FEMS Microbiol Lett. 2018-3-1
Microbiol Spectr. 2024-6-4
Appl Environ Microbiol. 2024-1-24
Microbiology (Reading). 2020-10
Proc Natl Acad Sci U S A. 2013-11-18
Adv Microb Physiol. 2016
引用本文的文献
Microorganisms. 2024-4-13
Microbiol Spectr. 2023-3-16
Front Mol Biosci. 2021-5-7
Front Microbiol. 2020-11-23
本文引用的文献
Front Microbiol. 2017-11-23
Trends Microbiol. 2017-8-10
Front Microbiol. 2016-11-14
Nucleic Acids Res. 2016-8-19
Nat Biotechnol. 2016-4-4