Suppr超能文献

SFOD-Trans:带有变压器模块的半监督细粒度目标检测框架。

SFOD-Trans: semi-supervised fine-grained object detection framework with transformer module.

作者信息

Liu Quankai, Zhang Guangyuan, Li Kefeng, Zhou Fengyu, Yu Dexin

机构信息

School of Information Science and Electric Engineering, Shandong Jiaotong University, Jinan, 250357, China.

School of Control Science and Engineering, Shandong University, Jinan, China.

出版信息

Med Biol Eng Comput. 2022 Dec;60(12):3555-3566. doi: 10.1007/s11517-022-02682-1. Epub 2022 Oct 17.

Abstract

As the labeling cost of object detection for medical images is very high, semi-supervised learning methods for medical images are investigated. In this paper, semi-supervised fine-grained object detection framework with transformer module (SFOD-Trans) is proposed for hepatic portal vein detection. It adopts Sparse R-CNN as the backbone. In detection model, the transformer module is introduced and contrastive loss is added to improve the performance of fine-grained object detection. In order to complete the information transfer both of labeled and unlabeled pictures, a new fusion module named normalized ROI fusion (NRF) is designed based on the characteristics of hepatic portal vein. We run a large number of experiments on a dataset of 1000 real CT scans. The results show that Average Precision (AP) and Average Recall (AR) of the proposed method reach 0.773 and 0.831 respectively with the 300 labeled and 1500 unlabeled samples. An overview of semi-supervised fine-grained object detection framework with transformer module (SFOD-Trans). There are two parallel branches to train supervised loss and semi-supervised loss respectively.

摘要

由于医学图像目标检测的标注成本非常高,因此对医学图像的半监督学习方法进行了研究。本文提出了一种带有Transformer模块的半监督细粒度目标检测框架(SFOD-Trans)用于肝门静脉检测。它采用Sparse R-CNN作为主干网络。在检测模型中,引入了Transformer模块并添加了对比损失以提高细粒度目标检测的性能。为了完成标记图片和未标记图片的信息传递,基于肝门静脉的特征设计了一种名为归一化感兴趣区域融合(NRF)的新融合模块。我们在一个包含1000张真实CT扫描的数据集上进行了大量实验。结果表明,在所提出的方法中,使用300个标记样本和1500个未标记样本时,平均精度(AP)和平均召回率(AR)分别达到0.773和0.831。带有Transformer模块的半监督细粒度目标检测框架(SFOD-Trans)概述。有两个并行分支分别用于训练监督损失和半监督损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验