IEEE Trans Biomed Eng. 2024 Apr;71(4):1308-1318. doi: 10.1109/TBME.2023.3333327. Epub 2024 Mar 20.
An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly. Semi-supervised learning (SSL) and transfer learning can be used to exploit the unlabeled data and the auxiliary data, respectively, to reduce the amount of labeled data for a new subject.
This paper proposes deep source semi-supervised transfer learning (DS3TL) for EEG-based BCIs, which assumes the source subject has a small number of labeled EEG trials and a large number of unlabeled ones, whereas all EEG trials from the target subject are unlabeled. DS3TL mainly includes a hybrid SSL module, a weakly-supervised contrastive module, and a domain adaptation module. The hybrid SSL module integrates pseudo-labeling and consistency regularization for SSL. The weakly-supervised contrastive module performs contrastive learning by using the true labels of the labeled data and the pseudo-labels of the unlabeled data. The domain adaptation module reduces the individual differences by uncertainty reduction.
Experiments on three EEG datasets from different tasks demonstrated that DS3TL outperformed a supervised learning baseline with many more labeled training data, and multiple state-of-the-art SSL approaches with the same number of labeled data.
To our knowledge, this is the first approach in EEG-based BCIs that exploits the unlabeled source data for more accurate target classifier training.
脑电图(EEG)脑机接口(BCI)将用户的 EEG 信号映射为外部设备控制的命令。通常需要大量标记的 EEG 试验来训练可靠的 EEG 识别模型。然而,获取标记的 EEG 数据既耗时又不便于用户使用。半监督学习(SSL)和迁移学习可分别用于利用未标记的数据和辅助数据,以减少新主题的标记数据量。
本文提出了基于 EEG 的 BCI 的深度源半监督迁移学习(DS3TL),它假设源主题具有少量标记的 EEG 试验和大量未标记的 EEG 试验,而目标主题的所有 EEG 试验都是未标记的。DS3TL 主要包括混合 SSL 模块、弱监督对比模块和域自适应模块。混合 SSL 模块集成了伪标记和一致性正则化的 SSL。弱监督对比模块通过使用标记数据的真实标签和未标记数据的伪标签进行对比学习。域自适应模块通过减少不确定性来减少个体差异。
来自不同任务的三个 EEG 数据集的实验表明,与具有更多标记训练数据的监督学习基线相比,DS3TL 表现更好,与具有相同数量标记数据的多个最先进的 SSL 方法相比,DS3TL 表现更好。
据我们所知,这是 EEG 脑机接口中首次利用未标记的源数据进行更准确的目标分类器训练的方法。