Suppr超能文献

基于熵约束的对比学习的半监督CT图像分割

Semi-supervised CT image segmentation via contrastive learning based on entropy constraints.

作者信息

Xiao Zhiyong, Sun Hao, Liu Fei

机构信息

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122 Jiangsu China.

Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214071 Jiangsu China.

出版信息

Biomed Eng Lett. 2024 May 23;14(5):1023-1035. doi: 10.1007/s13534-024-00387-y. eCollection 2024 Sep.

Abstract

Deep learning-based methods for fast target segmentation of computed tomography (CT) imaging have become increasingly popular. The success of current deep learning methods usually depends on a large amount of labeled data. Labeling medical data is a time-consuming and laborious task. Therefore, this paper aims to enhance the segmentation of CT images by using a semi-supervised learning method. In order to utilize the valid information in unlabeled data, we design a semi-supervised network model for contrastive learning based on entropy constraints. We use CNN and Transformer to capture the image's local and global feature information, respectively. In addition, the pseudo-labels generated by the teacher networks are unreliable and will lead to degradation of the model performance if they are directly added to the training. Therefore, unreliable samples with high entropy values are discarded to avoid the model extracting the wrong features. In the student network, we also introduce the residual squeeze and excitation module to learn the connection between different channels of each layer feature to obtain better segmentation performance. We demonstrate the effectiveness of the proposed method on the COVID-19 CT public dataset. We mainly considered three evaluation metrics: DSC, HD, and JC. Compared with several existing state-of-the-art semi-supervised methods, our method improves DSC by 2.3%, JC by 2.5%, and reduces HD by 1.9 mm. In this paper, a semi-supervised medical image segmentation method is designed by fusing CNN and Transformer and utilizing entropy-constrained contrastive learning loss, which improves the utilization of unlabeled medical images.

摘要

基于深度学习的计算机断层扫描(CT)成像快速目标分割方法越来越受欢迎。当前深度学习方法的成功通常依赖于大量的标注数据。标注医学数据是一项耗时费力的任务。因此,本文旨在通过使用半监督学习方法来增强CT图像的分割。为了利用未标注数据中的有效信息,我们设计了一种基于熵约束的对比学习半监督网络模型。我们分别使用卷积神经网络(CNN)和Transformer来捕捉图像的局部和全局特征信息。此外,教师网络生成的伪标签不可靠,如果直接添加到训练中会导致模型性能下降。因此,丢弃具有高熵值的不可靠样本,以避免模型提取错误特征。在学生网络中,我们还引入了残差挤压与激励模块,以学习每层特征不同通道之间的联系,从而获得更好的分割性能。我们在COVID-19 CT公共数据集上验证了所提方法的有效性。我们主要考虑了三个评估指标:DSC、HD和JC。与几种现有的先进半监督方法相比,我们的方法将DSC提高了2.3%,JC提高了2.5%,并将HD降低了1.9毫米。本文通过融合CNN和Transformer并利用熵约束对比学习损失设计了一种半监督医学图像分割方法,提高了未标注医学图像的利用率。

相似文献

1
Semi-supervised CT image segmentation via contrastive learning based on entropy constraints.基于熵约束的对比学习的半监督CT图像分割
Biomed Eng Lett. 2024 May 23;14(5):1023-1035. doi: 10.1007/s13534-024-00387-y. eCollection 2024 Sep.
5
Dual-branch Transformer for semi-supervised medical image segmentation.双分支Transformer 用于半监督医学图像分割。
J Appl Clin Med Phys. 2024 Oct;25(10):e14483. doi: 10.1002/acm2.14483. Epub 2024 Aug 12.

本文引用的文献

6
Semisupervised Semantic Segmentation by Improving Prediction Confidence.通过提高预测置信度实现半监督语义分割
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4991-5003. doi: 10.1109/TNNLS.2021.3066850. Epub 2022 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验