Vallmitjana Alexander, Lepanto Paola, Irigoin Florencia, Malacrida Leonel
Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States of America.
Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay.
Methods Appl Fluoresc. 2022 Nov 9;11(1). doi: 10.1088/2050-6120/ac9ae9.
Hyperspectral imaging (HSI) is a paramount technique in biomedical science, however, unmixing and quantification of each spectral component is a challenging task. Traditional unmixing relies on algorithms that need spectroscopic parameters from the fluorescent species in the sample. The phasor-based multi-harmonic unmixing method requires only the empirical measurement of the pure species to compute the pixel-wise photon fraction of every spectral component. Using simulations, we demonstrate the feasibility of the approach for up to 5 components and explore the use of adding a 6th unknown component representing autofluorescence. The simulations show that the method can be successfully used in typical confocal imaging experiments (with pixel photon counts between 10and 10). As a proof of concept, we tested the method in living cells, using 5 common commercial dyes for organelle labeling and we easily and accurately separate them. Finally, we challenged the method by introducing a solvatochromic probe, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (LAURDAN), intended to measure membrane dynamics on specific subcellular membrane-bound organelles by taking advantage of the linear combination between the organelle probes and LAURDAN. We succeeded in monitoring the membrane order in the Golgi apparatus, Mitochondria, and plasma membrane in the samecell and quantitatively comparing them. The phasor-based multi-harmonic unmixing method can help expand the outreach of HSI and democratize its use by the community for it does not require specialized knowledge.
高光谱成像(HSI)是生物医学科学中的一项重要技术,然而,对每个光谱成分进行解混和定量是一项具有挑战性的任务。传统的解混依赖于需要样品中荧光物质光谱参数的算法。基于相量的多谐波解混方法仅需要对纯物质进行经验测量,以计算每个光谱成分的逐像素光子分数。通过模拟,我们证明了该方法对多达5种成分的可行性,并探索了添加代表自发荧光的第6种未知成分的用途。模拟结果表明,该方法可以成功应用于典型的共聚焦成像实验(像素光子计数在10到10之间)。作为概念验证,我们在活细胞中测试了该方法,使用5种常见的商业染料进行细胞器标记,并且我们轻松准确地将它们分离。最后,我们通过引入一种溶剂化显色探针6-十二烷酰基-N,N-二甲基-2-萘胺(LAURDAN)对该方法进行了挑战,该探针旨在利用细胞器探针与LAURDAN之间的线性组合来测量特定亚细胞膜结合细胞器上的膜动力学。我们成功地监测了同一细胞中高尔基体、线粒体和质膜的膜有序性,并对它们进行了定量比较。基于相量的多谐波解混方法有助于扩大HSI的应用范围,并使其在社区中的使用更加普及,因为它不需要专业知识。