Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
Methods Enzymol. 2024;700:105-126. doi: 10.1016/bs.mie.2024.01.024. Epub 2024 Feb 5.
Hyperspectral imaging is a technique that captures a three-dimensional array of spectral information at each spatial location within a sample, enabling precise characterization and discrimination of biological structures, materials, and chemicals, based on their unique spectral features. Nowadays most commercially available confocal microscopes allow hyperspectral imaging measurements, providing a valuable source of spatially resolved spectroscopic data. Spectral phasor analysis quantitatively and graphically transforms the fluorescence spectra at each pixel of a hyperspectral image into points in a polar plot, offering a visual representation of the spectral characteristics of fluorophores within the sample. Combining the use of environmentally sensitive dyes with phasor analysis of hyperspectral images provides a powerful tool for measuring small changes in lateral membrane heterogeneity. Here, we focus on applications of spectral phasor analysis for the probe LAURDAN on model membranes to resolve packing and hydration. The method is broadly applicable to other dyes and to complex systems such as cell membranes.
高光谱成像是一种技术,可在样本内的每个空间位置捕获三维光谱信息数组,从而能够基于其独特的光谱特征对生物结构、材料和化学物质进行精确的描述和区分。如今,大多数市售的共聚焦显微镜都允许进行高光谱成像测量,为提供具有空间分辨率的光谱数据提供了有价值的来源。光谱相因子分析将高光谱图像中每个像素的荧光光谱定量且图形化为极坐标中的点,为样本中的荧光团的光谱特征提供了直观的表示。将环境敏感染料与高光谱图像的相因子分析相结合,为测量侧向膜异质性的微小变化提供了一种强大的工具。在这里,我们专注于使用光谱相因子分析研究模型膜上的环境敏感探针 LAURDAN 以解决其堆积和水合问题。该方法广泛适用于其他染料和复杂系统,例如细胞膜。