Chen Qinyi, Park Jongchan, Mu Shuqi, Gao Liang
Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
California Nano Systems Institute, University of California, Los Angeles, California 90095, USA.
Biomed Opt Express. 2025 Jul 8;16(8):3116-3127. doi: 10.1364/BOE.565990. eCollection 2025 Aug 1.
The phasor approach to time-domain fluorescence lifetime imaging microscopy (FLIM) offers a powerful, fit-free method for analyzing complex fluorescence decay signals. However, its quantitative accuracy is fundamentally limited by noise-particularly photon shot noise-which introduces variability and deviations in lifetime estimation and fluorophore unmixing. In this study, we present a theoretical uncertainty model for phasor-based time-domain FLIM that analytically captures the propagation of shot noise and quantifies its impact on phasor coordinates and fluorophore weight estimation. We validate the model using Monte Carlo simulations and experimental data acquired from standard fluorescent dyes and biological tissue samples. Our model improves the overall reliability and efficiency of phasor-based time-domain FLIM, particularly in photon-limited imaging applications.
用于时域荧光寿命成像显微镜(FLIM)的相量法提供了一种强大的、无需拟合的方法来分析复杂的荧光衰减信号。然而,其定量准确性从根本上受到噪声的限制,尤其是光子散粒噪声,它会在寿命估计和荧光团解混中引入变异性和偏差。在本研究中,我们提出了一种基于相量的时域FLIM的理论不确定性模型,该模型通过分析捕捉散粒噪声的传播,并量化其对相量坐标和荧光团权重估计的影响。我们使用蒙特卡罗模拟和从标准荧光染料及生物组织样本获取的实验数据对该模型进行了验证。我们的模型提高了基于相量的时域FLIM的整体可靠性和效率,特别是在光子受限的成像应用中。