Suppr超能文献

比较三种数据驱动模型用于非均质气候条件下的月蒸散量预测

Comparing three types of data-driven models for monthly evapotranspiration prediction under heterogeneous climatic conditions.

作者信息

Aghelpour Pouya, Varshavian Vahid, Khodamorad Pour Mehraneh, Hamedi Zahra

机构信息

Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

Computer Science Department, University of Birmingham, Birmingham, UK.

出版信息

Sci Rep. 2022 Oct 17;12(1):17363. doi: 10.1038/s41598-022-22272-3.

Abstract

Evapotranspiration is one of the most important hydro-climatological components which directly affects agricultural productions. Therefore, its forecasting is critical for water managers and irrigation planners. In this study, adaptive neuro-fuzzy inference system (ANFIS) model has been hybridized by differential evolution (DE) optimization algorithm as a novel approach to forecast monthly reference evapotranspiration (ET0). Furthermore, this model has been compared with the classic stochastic time series model. For this, the ET0 rates were calculated on a monthly scale during 1995-2018, based on FAO-56 Penman-Monteith equation and meteorological data including minimum air temperature, maximum air temperature, mean air temperature, minimum relative humidity, maximum relative humidity & sunshine duration. The investigation was performed on 6 stations in different climates of Iran, including Bandar Anzali & Ramsar (per-humid), Gharakhil (sub-humid), Shiraz (semi-arid), Ahwaz (arid), and Yazd (extra-arid). The models' performances were evaluated by the criteria percent bias (PB), root mean squared error (RMSE), normalized RMSE (NRMSE), and Nash-Sutcliff (NS) coefficient. Surveys confirm the high capability of the hybrid ANFIS-DE model in monthly ET0 forecasting; so that the DE algorithm was able to improve the accuracy of ANFIS, by 16% on average. Seasonal autoregressive integrated moving average (SARIMA) was the most suitable pattern among the time series stochastic models and superior to its competitors, ANFIS and ANFIS-DE. Consequently, the SARIMA was suggested more appropriate for monthly ET0 forecasting in all the climates, due to its simplicity and parsimony. Comparison between the different climates confirmed that the climate type significantly affects the forecasting accuracies: it's revealed that all the models work better in extra-arid, arid and semi-arid climates, than the humid and per-humid areas.

摘要

蒸散是最重要的水文气候要素之一,直接影响农业生产。因此,对其进行预测对于水资源管理者和灌溉规划者至关重要。在本研究中,自适应神经模糊推理系统(ANFIS)模型已与差分进化(DE)优化算法相结合,作为预测月参考蒸散量(ET0)的一种新方法。此外,该模型还与经典的随机时间序列模型进行了比较。为此,基于粮农组织-56彭曼-蒙特斯方程以及包括最低气温、最高气温、平均气温、最低相对湿度、最高相对湿度和日照时长在内的气象数据,计算了1995 - 2018年期间月尺度的ET0速率。研究在伊朗不同气候区的6个站点进行,包括安扎利港和拉姆萨尔(全湿润)、加拉希尔(亚湿润)、设拉子(半干旱)、阿瓦士(干旱)和亚兹德(极干旱)。通过偏差百分比(PB)、均方根误差(RMSE)、归一化RMSE(NRMSE)和纳什 - 萨特克利夫(NS)系数等标准对模型性能进行了评估。调查证实了混合ANFIS - DE模型在月ET0预测方面具有很高的能力;差分进化算法平均能够将ANFIS的准确率提高16%。季节性自回归积分移动平均(SARIMA)是时间序列随机模型中最合适的模式,优于其竞争对手ANFIS和ANFIS - DE。因此,由于其简单性和简约性,SARIMA被认为更适合所有气候条件下的月ET0预测。不同气候之间的比较证实,气候类型显著影响预测精度:结果表明,所有模型在极干旱、干旱和半干旱气候条件下的表现都优于湿润和全湿润地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/9576755/0bd6f7e70619/41598_2022_22272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验