Sheiner L B, Beal S L
J Pharmacokinet Biopharm. 1987 Feb;15(1):93-8. doi: 10.1007/BF01062941.
It has previously been shown that the extended least squares (ELS) method for fitting pharmacokinetic models behaves better than other methods when there is possible heteroscedasticity (unequal error variance) in the data. Confidence intervals for pharmacokinetic parameters, at the target confidence level of 95%, computed in simulations with several pharmacokinetic and error variance models, using a theoretically reasonable approximation to the asymptotic covariance matrix of the ELS parameter estimator, are found to include the true parameter values considerably less than 95% of the time. Intervals with the ordinary least squares method perform better. Two adjustments to the ELS confidence intervals, taken together, result in better performance. These are: (i) apply a bias correction to the ELS estimate of variance, which results in wider confidence intervals, and (ii) use confidence intervals with a target level of 99% to obtain confidence intervals with actual level closer to 95%. Kineticists wishing to use the ELS method may wish to use these adjustments.
先前的研究表明,在数据可能存在异方差(误差方差不相等)的情况下,用于拟合药代动力学模型的扩展最小二乘法(ELS)比其他方法表现更好。在使用几种药代动力学和误差方差模型进行的模拟中,使用对ELS参数估计器的渐近协方差矩阵的理论上合理的近似,计算出的目标置信水平为95%的药代动力学参数置信区间,发现其包含真实参数值的时间远低于95%。普通最小二乘法的区间表现更好。对ELS置信区间进行的两种调整一起使用时,性能会更好。这两种调整是:(i)对ELS方差估计应用偏差校正,这会导致置信区间变宽;(ii)使用目标水平为99%的置信区间,以获得实际水平更接近95%的置信区间。希望使用ELS方法的动力学研究者可能希望采用这些调整。