Suppr超能文献

群体药代动力学参数估算方法的评估。I. 米氏模型:常规临床药代动力学数据。

Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data.

作者信息

Sheiner L B, Beal S L

出版信息

J Pharmacokinet Biopharm. 1980 Dec;8(6):553-71. doi: 10.1007/BF01060053.

Abstract

Individual pharmacokinetic par parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual variability, and residual intraindividual variability plus measurement error. Individual pharmacokinetics are estimated by fitting individual data to a pharmacokinetic model. Population pharmacokinetic parameters are estimated either by fitting all individual's data together as though there was no individual kinetic differences (the naive pooled data approach), or by fitting each individual's data separately, and then combining the individual parameter estimates (the two-stage approach). A third approach, NONMEM, takes a middle course between these, and avoids shortcomings of each of them. A data set consisting of 124 steady-state phenytoin concentration-dosage pairs from 49 patients, obtained in the routine course of their therapy, was analyzed by each method. The resulting population parameter estimates differ considerably (population mean Km, for example, is estimated as 1.57, 5.36, and 4.44 micrograms/ml by the naive pooled data, two-stage, and NONMEN approaches, respectively). Simulations of the data were analyzed to investigate these differences. The simulations indicate that the pooled data approach fails to estimate variabilities and produces imprecise estimates of mean kinetics. The two-stage approach produces good estimates of mean kinetics, but biased and imprecise estimates of interindividual variability. NONMEN produces accurate and precise estimates of all parameters, and also reasonable confidence intervals for them. This performance is exactly what is expected from theoretical considerations and provides empirical support for the use of NONMEM when estimating population pharmacokinetics from routine type patient data.

摘要

个体药代动力学参数用于量化个体的药代动力学,而群体药代动力学参数则用于量化群体平均动力学、个体间变异性以及个体内残余变异性加测量误差。个体药代动力学通过将个体数据拟合到药代动力学模型来估算。群体药代动力学参数的估算方法有两种:一种是将所有个体的数据一起拟合,就好像不存在个体动力学差异一样(即简单合并数据法);另一种是分别拟合每个个体的数据,然后合并个体参数估计值(即两阶段法)。第三种方法,即NONMEM法,介于这两种方法之间,避免了它们各自的缺点。对一组由49名患者在常规治疗过程中获得的124个稳态苯妥英浓度-剂量对组成的数据集,分别用这三种方法进行了分析。得出的群体参数估计值差异很大(例如,简单合并数据法、两阶段法和NONMEM法估计的群体平均Km分别为1.57、5.36和4.44微克/毫升)。对数据进行模拟分析以研究这些差异。模拟结果表明,合并数据法无法估计变异性,并且对平均动力学的估计不准确。两阶段法对平均动力学的估计较好,但对个体间变异性的估计有偏差且不准确。NONMEM法对所有参数都能进行准确而精确的估计,并且能给出合理的置信区间。这种性能与理论考虑完全相符,为从常规患者数据估算群体药代动力学时使用NONMEM法提供了实证支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验