Department of Chemistry, University of Nevada, Reno, Nevada89557, United States.
J Phys Chem B. 2022 Oct 27;126(42):8362-8373. doi: 10.1021/acs.jpcb.2c03960. Epub 2022 Oct 18.
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
我们通过分子动力学模拟计算了处于非活性状态和两种活性状态下的胰高血糖素样肽-1 受体 (GLP-1R) 的能量交换网络 (EEN),GLP-1R 是一种 B 类 G 蛋白偶联受体 (GPCR),其中一种活性状态由肽配体激活,另一种由小分子激动剂激活。在激活后重新组织的网络包含结构和动态变化的贡献以及对激活自由能的相应熵贡献,这是根据非共价接触中能量转移速率的变化来估计的。我们还研究了 EEN 中和 GLP-1R 激活过程中水分子的作用。与非活性状态相比,与跨膜区域中央极性网络接触的水分子的动力学在两种激活状态下都明显较慢。这一结果与先前提出的水分子对 GLP-1R 激活的贡献一致,类似于在早期对 rhodopsin 样 GPCR 研究中发现的跨膜区域部分的水分子动力学。