Suppr超能文献

单室电活性人工湿地系统中偶氮染料降解和温室气体减排的性能及机制。

Performance and mechanism of azo dyes degradation and greenhouse gases reduction in single-chamber electroactive constructed wetland system.

机构信息

College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China.

Jinan Municipal Engineering Design and Research Institute (Group) Co., Ltd., Jinan 250003, PR China.

出版信息

Bioresour Technol. 2022 Dec;365:128142. doi: 10.1016/j.biortech.2022.128142. Epub 2022 Oct 15.

Abstract

A single-chamber microbial fuel cell-microbial electrolytic cell with a novel constructed wetland system was proposed for synergistic degradation of congo red and reduction in emissions of greenhouse gases. The closed-circuit system showed higher chemical oxygen demand and congo red removal efficiencies by 98 % and 96 % on average, respectively, than traditional constructed wetland. It could also significantly reduce the emissions of CH and NO (about 52 % CO-equivalents) by increasing the electron transfer. Microbial community analysis demonstrated that the progressive enrichment of dye-degrading microorganisms (Comamonas), electroactive bacteria (Tolumonas, Trichococcus) and denitrifying microorganisms (Dechloromonas) promoted pollutant removal and electron transfer. Based on gene abundance of xenobiotics biodegradation, the congo red biodegradation pathway was described as congo red → naphthalene and alcohols → CO and HO. In summary, the single-chamber closed-circuit system could significantly improve the degradation of congo red and reduce the emissions of greenhouse gases by influencing electron transfer and microbial activity.

摘要

一种新型的单室微生物燃料电池-微生物电解池与湿地系统协同降解刚果红并减少温室气体排放。闭路系统的化学需氧量和刚果红去除效率分别比传统湿地系统平均提高了 98%和 96%。它还可以通过增加电子转移来显著减少 CH 和 NO 的排放(约 52%的 CO 当量)。微生物群落分析表明,染料降解微生物(Comamonas)、电活性细菌(Tolumonas、Trichococcus)和反硝化微生物(Dechloromonas)的逐渐富集促进了污染物的去除和电子转移。根据异生物质生物降解的基因丰度,描述了刚果红的生物降解途径为刚果红→萘和醇→CO 和 HO。总之,单室闭路系统可以通过影响电子转移和微生物活性,显著提高刚果红的降解效率并减少温室气体的排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验