Suppr超能文献

高级别和复发性子宫内膜癌:现状和未来展望。

Advanced and recurrent endometrial cancer: State of the art and future perspectives.

机构信息

Oncologic Clinic, Università Politecnica delle Marche, Via Conca 71, 60126 Torrette, Ancona, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.

Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.

出版信息

Crit Rev Oncol Hematol. 2022 Dec;180:103851. doi: 10.1016/j.critrevonc.2022.103851. Epub 2022 Oct 17.

Abstract

Patients with primary metastatic/recurrent endometrial cancer have poor prognosis and available therapeutic options are limited. Current treatment is mainly based on platinum-based chemotherapy. Recently, the Food and Drug Administration (FDA) granted approval for the combination of pembrolizumab and lenvatinib for endometrial cancer patients without microsatellite instability (MSS) progressing on a previous line of therapy while European Medicines Agency (EMA) approved the combination for all comers patients failing previous platinum treatment. Anti programmed cell death protein-1 (PD-1) dostarlimab (TSR-042) was approved as monotherapy in patients with advanced, microsatellite instable (MSI) endometrial cancer progressing to platinum treatment. Phase II-III clinical trials in metastatic endometrial cancer are mainly focused on target therapies and immunotherapy as single agents or in combination. Unfortunately, most of these trials are lacking of predictive biomarkers of response to select patients most or at least likely to benefit from those treatments.

摘要

原发性转移性/复发性子宫内膜癌患者预后较差,可用的治疗选择有限。目前的治疗主要基于铂类化疗。最近,美国食品和药物管理局(FDA)批准了 pembrolizumab 和 lenvatinib 联合用于既往一线治疗进展的无微卫星不稳定(MSS)的子宫内膜癌患者,而欧洲药品管理局(EMA)则批准了该联合用药方案用于所有先前铂类治疗失败的患者。抗程序性细胞死亡蛋白-1(PD-1) dostarlimab(TSR-042)作为单药治疗已获批用于进展至铂类治疗的晚期、微卫星不稳定(MSI)子宫内膜癌患者。转移性子宫内膜癌的 II-III 期临床试验主要集中在靶向治疗和免疫治疗作为单一药物或联合治疗。不幸的是,这些试验中的大多数缺乏对那些治疗最有反应或至少最有可能受益的患者的反应预测生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验