Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea.
Adv Sci (Weinh). 2022 Dec;9(34):e2203720. doi: 10.1002/advs.202203720. Epub 2022 Oct 18.
Despite the ever-increasing demand for transparent power sources in wireless optoelectronics, most of them have still relied on synthetic chemicals, thus limiting their versatile applications. Here, a class of transparent nanocellulose paper microsupercapacitors (TNP-MSCs) as a beyond-synthetic-material strategy is demonstrated. Onto semi-interpenetrating polymer network-structured, thiol-modified transparent nanocellulose paper, a thin layer of silver nanowire and a conducting polymer (chosen as a pseudocapacitive electrode material) are consecutively introduced through microscale-patterned masks (which are fabricated by electrohydrodynamic jet printing) to produce a transparent conductive electrode (TNP-TCE) with planar interdigitated structure. This TNP-TCE, in combination with solid-state gel electrolytes, enables on-demand (in-series/in-parallel) cell configurations in a single body of TNP-MSC. Driven by this structural uniqueness and scalable microfabrication, the TNP-MSC exhibits improvements in optical transparency (T = 85%), areal capacitance (0.24 mF cm ), controllable voltage (7.2 V per cell), and mechanical flexibility (origami airplane), which exceed those of previously reported transparent MSCs based on synthetic chemicals.
尽管无线光电子学对透明电源的需求不断增加,但大多数仍依赖于合成化学品,从而限制了它们的多种应用。在这里,展示了一类透明纳米纤维素纸微超级电容器 (TNP-MSCs),作为超越合成材料的策略。在半互穿聚合物网络结构、巯基改性透明纳米纤维素纸上,通过微图案化掩模(通过静电喷射印刷制造)连续引入一层银纳米线和导电聚合物(选择为赝电容电极材料),以产生具有平面叉指结构的透明导电电极 (TNP-TCE)。这种 TNP-TCE 与固态凝胶电解质结合,可在 TNP-MSC 的单个主体中按需(串联/并联)配置电池。由于这种结构独特性和可扩展的微制造,TNP-MSC 在光学透明度 (T = 85%)、面电容 (0.24 mF cm )、可控电压 (每个单元 7.2 V) 和机械灵活性 (折纸飞机) 方面都得到了改善,超过了之前报道的基于合成化学品的透明 MSCs。