Li Tian, Chen Chaoji, Brozena Alexandra H, Zhu J Y, Xu Lixian, Driemeier Carlos, Dai Jiaqi, Rojas Orlando J, Isogai Akira, Wågberg Lars, Hu Liangbing
Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
Center for Materials Innovation, University of Maryland, College Park, MD, USA.
Nature. 2021 Feb;590(7844):47-56. doi: 10.1038/s41586-020-03167-7. Epub 2021 Feb 3.
Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.
纤维素是地球上最丰富的生物聚合物,存在于树木、农作物废料和其他生物质中。构成纤维素的纤维可以分解成不同尺寸、可控制的结构单元,即原纤化纤维素,其尺寸可延伸至纳米级。原纤化纤维素是从可再生资源中获取的,因此其可持续性潜力与其其他功能特性(例如机械、光学、热学和流体特性)相结合,赋予了这种纳米材料独特的技术吸引力。在这里,我们探讨了原纤化纤维素在制造从复合材料、宏观纤维到薄膜、多孔膜和凝胶等各种材料中的应用。我们讨论了实际开发这些结构的研究方向,以及在原纤化纤维素材料发挥其全部潜力之前需要克服的剩余挑战。最后,我们强调了成功扩大这类材料生产规模的一些关键问题。