Schröder Markus, Gatti Fabien, Lauvergnat David, Meyer Hans-Dieter, Vendrell Oriol
Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany.
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405, Orsay, France.
Nat Commun. 2022 Oct 18;13(1):6170. doi: 10.1038/s41467-022-33650-w.
The Zundel ([Formula: see text]) and Eigen ([Formula: see text]) cations play an important role as intermediate structures for proton transfer processes in liquid water. In the gas phase they exhibit radically different infrared (IR) spectra. The question arises: is there a least common denominator structure that explains the IR spectra of both, the Zundel and Eigen cations, and hence of the solvated proton? Full dimensional quantum simulations of these protonated cations demonstrate that two dynamical water molecules and an excess proton constitute this fundamental subunit. Embedded in the static environment of the parent Eigen cation, this subunit reproduces the positions and broadenings of its main excess-proton bands. In isolation, its spectrum reverts to the well-known Zundel ion. Hence, the dynamics of this subunit polarized by an environment suffice to explain the spectral signatures and anharmonic couplings of the solvated proton in its first solvation shell.
尊德耳([化学式:见原文])阳离子和本征([化学式:见原文])阳离子在液态水中质子转移过程的中间结构中起着重要作用。在气相中,它们表现出截然不同的红外(IR)光谱。问题来了:是否存在一种最小公分母结构,能够解释尊德耳阳离子和本征阳离子的红外光谱,进而解释溶剂化质子的红外光谱?对这些质子化阳离子的全维量子模拟表明,两个动态水分子和一个过量质子构成了这个基本亚基。嵌入母体本征阳离子的静态环境中,这个亚基再现了其主要过量质子带的位置和展宽。孤立状态下,其光谱恢复为著名的尊德耳离子光谱。因此,这种被环境极化的亚基的动力学足以解释溶剂化质子在其第一溶剂化层中的光谱特征和非谐耦合。