Suppr超能文献

利用疫苗描述本体对疫苗编码进行对齐。

Alignment of vaccine codes using an ontology of vaccine descriptions.

机构信息

Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam, 3015, GE, The Netherlands.

出版信息

J Biomed Semantics. 2022 Oct 18;13(1):24. doi: 10.1186/s13326-022-00278-0.

Abstract

BACKGROUND

Vaccine information in European electronic health record (EHR) databases is represented using various clinical and database-specific coding systems and drug vocabularies. The lack of harmonization constitutes a challenge in reusing EHR data in collaborative benefit-risk studies about vaccines.

METHODS

We designed an ontology of the properties that are commonly used in vaccine descriptions, called Ontology of Vaccine Descriptions (VaccO), with a dictionary for the analysis of multilingual vaccine descriptions. We implemented five algorithms for the alignment of vaccine coding systems, i.e., the identification of corresponding codes from different coding ystems, based on an analysis of the code descriptors. The algorithms were evaluated by comparing their results with manually created alignments in two reference sets including clinical and database-specific coding systems with multilingual code descriptors.

RESULTS

The best-performing algorithm represented code descriptors as logical statements about entities in the VaccO ontology and used an ontology reasoner to infer common properties and identify corresponding vaccine codes. The evaluation demonstrated excellent performance of the approach (F-scores 0.91 and 0.96).

CONCLUSION

The VaccO ontology allows the identification, representation, and comparison of heterogeneous descriptions of vaccines. The automatic alignment of vaccine coding systems can accelerate the readiness of EHR databases in collaborative vaccine studies.

摘要

背景

疫苗信息在欧洲电子健康记录 (EHR) 数据库中使用各种临床和数据库特定的编码系统和药物词汇来表示。缺乏协调一致构成了在关于疫苗的合作效益风险研究中重新使用 EHR 数据的挑战。

方法

我们设计了一个常用疫苗描述属性的本体,称为疫苗描述本体 (VaccO),并为多语言疫苗描述的分析提供了一个字典。我们基于对代码描述符的分析,为疫苗编码系统的对齐实现了五种算法,即从不同编码系统中识别相应代码的方法。通过将算法的结果与两个参考集中手动创建的对齐进行比较,评估了算法的性能,这两个参考集包括具有多语言代码描述符的临床和数据库特定编码系统。

结果

表现最好的算法将代码描述符表示为关于 VaccO 本体中实体的逻辑语句,并使用本体推理器来推断共同属性并识别相应的疫苗代码。评估表明该方法具有出色的性能(F 分数为 0.91 和 0.96)。

结论

VaccO 本体允许识别、表示和比较疫苗的异构描述。疫苗编码系统的自动对齐可以加速合作疫苗研究中 EHR 数据库的准备工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e82b/9580193/82370e6cc7e4/13326_2022_278_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验