Suppr超能文献

用于改进定量重建的数字全息显微镜中像差的精确无监督估计。

Accurate unsupervised estimation of aberrations in digital holographic microscopy for improved quantitative reconstruction.

作者信息

Brault Dylan, Olivier Thomas, Soulez Ferréol, Joshi Sachin, Faure Nicolas, Fournier Corinne

出版信息

Opt Express. 2022 Oct 10;30(21):38383-38404. doi: 10.1364/OE.471638.

Abstract

In the context of digital in-line holographic microscopy, we describe an unsupervised methodology to estimate the aberrations of an optical microscopy system from a single hologram. The method is based on the Inverse Problems Approach reconstructions of holograms of spherical objects. The forward model is based on a Lorenz-Mie model distorted by optical aberrations described by Zernike polynomials. This methodology is thus able to characterize most varying aberrations in the field of view in order to take them into account to improve the reconstruction of any sample. We show that this approach increases the repeatability and quantitativity of the reconstructions in both simulations and experimental data. We use the Cramér-Rao lower bounds to study the accuracy of the reconstructions. Finally, we demonstrate the efficiency of this aberration calibration with image reconstructions using a phase retrieval algorithm as well as a regularized inverse problems algorithm.

摘要

在数字在线全息显微镜的背景下,我们描述了一种无监督方法,用于从单个全息图估计光学显微镜系统的像差。该方法基于球形物体全息图的逆问题方法重建。正向模型基于由泽尼克多项式描述的光学像差扭曲的洛伦兹-米氏模型。因此,这种方法能够表征视场中大多数变化的像差,以便考虑这些像差来改进任何样品的重建。我们表明,这种方法在模拟和实验数据中都提高了重建的可重复性和定量性。我们使用克拉美-罗下界来研究重建的准确性。最后,我们通过使用相位恢复算法以及正则化逆问题算法的图像重建来证明这种像差校准的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验