Suppr超能文献

海洋海绵的流变学揭示了各向异性力学和动态调节。

Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics.

机构信息

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.

出版信息

J R Soc Interface. 2022 Oct;19(195):20220476. doi: 10.1098/rsif.2022.0476. Epub 2022 Oct 19.

Abstract

Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells.

摘要

海绵动物栖息于多种水生环境中,通过过滤微小颗粒并排出代谢废物来维持自身的生命活动。它们由大量细胞组成,这些细胞位于细胞外基质中,通常还有嵌入其中的坚硬、硅质骨针组成的支架。我们假设这种异质组织对水流力学的响应方式会影响细胞的增殖,从而形成海绵的身体。为了更全面地了解海绵形态的出现,我们解剖了一组物种,并在流变仪上对活体组织的圆盘进行生理剪切和单轴变形实验。各种物种表现出的流变特性,例如各向异性弹性、剪切软化和压缩变硬、负法向应力以及耗散非单调变化等,均与剪切应变和频率有关。直立海绵具有排列整齐、由骨针增强的纤维,使其轴向刚度比正交方向高 3 倍。相比之下,取自短海绵的组织各向同性但具有时间依赖性,这表明与直立形式相比,这些海绵对流动更为敏感。我们探讨了我们研究结果的生态和生理学意义,并推测了海绵细胞中与流动诱导的机械信号有关的问题。

相似文献

1
Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics.
J R Soc Interface. 2022 Oct;19(195):20220476. doi: 10.1098/rsif.2022.0476. Epub 2022 Oct 19.
2
Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
Nature. 2019 Sep;573(7772):96-101. doi: 10.1038/s41586-019-1516-5. Epub 2019 Aug 28.
4
Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
Acta Biomater. 2024 Jun;181:272-281. doi: 10.1016/j.actbio.2024.03.028. Epub 2024 Apr 28.
5
Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.
J Mech Behav Biomed Mater. 2017 Jul;71:362-371. doi: 10.1016/j.jmbbm.2017.03.029. Epub 2017 Mar 28.
7
Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
Acta Biomater. 2023 Jun;163:106-116. doi: 10.1016/j.actbio.2022.09.063. Epub 2022 Sep 29.
8
Impact of crystalline domains on long-term stability and mechanical performance of anisotropic silk fibroin sponges.
J Biomed Mater Res A. 2024 Sep;112(9):1451-1471. doi: 10.1002/jbm.a.37703. Epub 2024 Mar 12.
9
Mesoscale elastic properties of marine sponge spicules.
J Struct Biol. 2016 Jan;193(1):67-74. doi: 10.1016/j.jsb.2015.11.009. Epub 2015 Dec 7.
10
Characterising skeletal muscle under large strain using eccentric and Fourier Transform-rheology.
J Biomech. 2015 Nov 5;48(14):3788-95. doi: 10.1016/j.jbiomech.2015.08.025. Epub 2015 Sep 25.

本文引用的文献

2
Optimal Elasticity of Biological Networks.
Phys Rev Lett. 2021 Jan 22;126(3):038101. doi: 10.1103/PhysRevLett.126.038101.
4
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
5
Compression stiffening of fibrous networks with stiff inclusions.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21037-21044. doi: 10.1073/pnas.2003037117. Epub 2020 Aug 17.
6
Embedding orthogonal memories in a colloidal gel through oscillatory shear.
Soft Matter. 2020 Apr 15;16(15):3746-3752. doi: 10.1039/c9sm02222h.
7
A unified rheological model for cells and cellularised materials.
R Soc Open Sci. 2020 Jan 22;7(1):190920. doi: 10.1098/rsos.190920. eCollection 2020 Jan.
8
Loss of Vimentin Enhances Cell Motility through Small Confining Spaces.
Small. 2019 Dec;15(50):e1903180. doi: 10.1002/smll.201903180. Epub 2019 Nov 13.
9
Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
Nature. 2019 Sep;573(7772):96-101. doi: 10.1038/s41586-019-1516-5. Epub 2019 Aug 28.
10
Compression stiffening in biological tissues: On the possibility of classic elasticity origins.
Phys Rev E. 2019 May;99(5-1):052413. doi: 10.1103/PhysRevE.99.052413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验