Suppr超能文献

用于增强光催化CO还原的Bi MO(M = Mo、V、W)纳米片的面特异性活性表面调控

Facet-specific Active Surface Regulation of Bi MO (M=Mo, V, W) Nanosheets for Boosted Photocatalytic CO reduction.

作者信息

Zhang Yanzhao, Zhi Xing, Harmer Jeffrey R, Xu Haolan, Davey Kenneth, Ran Jingrun, Qiao Shi-Zhang

机构信息

Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.

Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia.

出版信息

Angew Chem Int Ed Engl. 2022 Dec 12;61(50):e202212355. doi: 10.1002/anie.202212355. Epub 2022 Nov 15.

Abstract

Photocatalytic performance can be optimized via introduction of reactive sites. However, it is practically difficult to engineer these on specific photocatalyst surfaces, because of limited understanding of atomic-level structure-activity. Here we report a facile sonication-assisted chemical reduction for specific facets regulation via oxygen deprivation on Bi-based photocatalysts. The modified Bi MoO nanosheets exhibit 61.5 and 12.4 μmol g for CO and CH production respectively, ≈3 times greater than for pristine catalyst, together with excellent stability/reproducibility of ≈20 h. By combining advanced characterizations and simulation, we confirm the reaction mechanism on surface-regulated photocatalysts, namely, induced defects on highly-active surface accelerate charge separation/transfer and lower the energy barrier for surface CO adsorption/activation/reduction. Promisingly, this method appears generalizable to a wider range of materials.

摘要

通过引入反应位点可以优化光催化性能。然而,由于对原子级结构-活性的理解有限,在特定的光催化剂表面设计这些位点实际上很困难。在此,我们报道了一种通过在铋基光催化剂上进行缺氧处理来调控特定晶面的简便超声辅助化学还原方法。改性的Bi₂MoO₆纳米片分别表现出61.5和12.4 μmol g⁻¹的CO和CH₄生成量,分别比原始催化剂高出约3倍,同时具有约20小时的优异稳定性/可重复性。通过结合先进的表征和模拟,我们证实了表面调控光催化剂上的反应机制,即高活性表面上诱导的缺陷加速了电荷分离/转移,并降低了表面CO吸附/活化/还原的能垒。有希望的是,这种方法似乎可以推广到更广泛的材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dea3/10100506/5c4507f918eb/ANIE-61-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验