Cao Yuehan, Guo Lan, Dan Meng, Doronkin Dmitry E, Han Chunqiu, Rao Zhiqiang, Liu Yang, Meng Jie, Huang Zeai, Zheng Kaibo, Chen Peng, Dong Fan, Zhou Ying
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China.
The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu, China.
Nat Commun. 2021 Mar 15;12(1):1675. doi: 10.1038/s41467-021-21925-7.
The surface electron density significantly affects the photocatalytic efficiency, especially the photocatalytic CO reduction reaction, which involves multi-electron participation in the conversion process. Herein, we propose a conceptually different mechanism for surface electron density modulation based on the model of Au anchored CdS. We firstly manipulate the direction of electron transfer by regulating the vacancy types of CdS. When electrons accumulate on vacancies instead of single Au atoms, the adsorption types of CO change from physical adsorption to chemical adsorption. More importantly, the surface electron density is manipulated by controlling the size of Au nanostructures. When Au nanoclusters downsize to single Au atoms, the strong hybridization of Au 5d and S 2p orbits accelerates the photo-electrons transfer onto the surface, resulting in more electrons available for CO reduction. As a result, the product generation rate of Au/CdS manifests a remarkable at least 113-fold enhancement compared with pristine CdS.
表面电子密度显著影响光催化效率,尤其是光催化CO还原反应,该反应在转化过程中涉及多电子参与。在此,我们基于Au锚定CdS模型提出了一种在概念上不同的表面电子密度调制机制。我们首先通过调节CdS的空位类型来操纵电子转移方向。当电子积累在空位上而不是单个Au原子上时,CO的吸附类型从物理吸附转变为化学吸附。更重要的是,通过控制Au纳米结构的尺寸来操纵表面电子密度。当Au纳米团簇缩小到单个Au原子时,Au 5d和S 2p轨道的强杂化加速了光电子转移到表面,从而产生更多可用于CO还原的电子。结果,与原始CdS相比,Au/CdS的产物生成速率显著提高了至少113倍。