Wang Peng, Xu Tianyang, Xi Baojuan, Yuan Jia, Song Ning, Sun Di, Xiong Shenglin
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Adv Mater. 2022 Dec;34(51):e2207689. doi: 10.1002/adma.202207689. Epub 2022 Nov 22.
Toward the well-explored lithium-sulfur (Li-S) catalytic chemistry, the slow adsorption-migration-conversion kinetics of lithium polysulfides on catalytic materials and Li S deposition-induced passivation of active sites limit the rapid and complete conversion of sulfur. Conceptively, molecular architectures can provide atom-precise models to understand the underlying active sites responsible for selective adsorption and conversion of LiPSs and Li S /Li S species. Here, an octanuclear Zn(II) (Zn ) cluster is presented, which features a metallacalix[8]arene with double cavities up and down the Zn ring. The central Zn ring and the specific double cavities with organic ligands of different electronegativity and bonding environments render active sites with variable steric hindrance and interaction toward the sulfur-borne species. An intramolecular tandem transformation mechanism is realized exclusively by Zn cluster, which promotes the self-cleaning of active sites and continuous electrochemical reaction. Notably, the external azo groups and internal Zn/O sites of Zn cluster in sequence stimulate the adsorption and conversion of long chain Li S (x ≥ 4) and short chain Li S/Li S , contributing to remarkable rate performance and cycling stability. This work pioneers the application of metallacalix[n]arene clusters with atom-precise structure in Li-S batteries, and the proposed mechanism advances the molecule-level understanding of Li-S catalytic chemistry.
对于已得到充分研究的锂硫(Li-S)催化化学而言,多硫化锂在催化材料上缓慢的吸附-迁移-转化动力学以及Li₂S沉积诱导的活性位点钝化限制了硫的快速完全转化。从概念上讲,分子结构可以提供原子精确模型,以理解负责多硫化锂(LiPSs)和Li₂S/Li₂Sₓ物种选择性吸附和转化的潜在活性位点。在此,展示了一种八核Zn(II)(Zn₈)簇,其特征是在Zn环上下具有双腔的金属杯[8]芳烃。中心Zn环以及具有不同电负性和键合环境的有机配体的特定双腔形成了对硫携带物种具有可变空间位阻和相互作用的活性位点。一种分子内串联转化机制仅由Zn簇实现,它促进了活性位点的自清洁和连续的电化学反应。值得注意的是,Zn簇的外部偶氮基团和内部Zn/O位点依次刺激长链Li₂Sₓ(x≥4)和短链Li₂S/Li₂Sₓ的吸附和转化,有助于实现卓越的倍率性能和循环稳定性。这项工作开创了具有原子精确结构的金属杯[n]芳烃簇在锂硫电池中的应用,所提出的机制推进了对锂硫催化化学的分子水平理解。