Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio43210, United States.
Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio45221, United States.
J Phys Chem B. 2022 Nov 3;126(43):8669-8679. doi: 10.1021/acs.jpcb.2c04641. Epub 2022 Oct 19.
Biomolecular binding relies on specific attractive interactions between two partner molecules, including electrostatics, dispersion, hydrophobicity, and solvation. Assessing the contributions of electrostatic interactions to binding is key to the understanding of ligand binding mechanisms and the design of improved biomolecular binders. For example, nicotine is a well-known agonist of nicotinic acetylcholine receptors (nAChRs), but the molecular mechanisms for the differential action of nicotine on brain and muscle nAChRs remain elusive. In this work, we have chosen the acetylcholine binding protein (AChBP) in complex with nicotine as a model system to interrogate the electrostatic contributions to nicotine binding. Our absolute binding free energy simulations confirm that nicotine binds AChBP predominantly in its protonated (charged) form. By comparing energetic contributions from decomposed interactions for either neutral or charged nicotine, our calculations shed light on the nature of the binding of nicotine to the AChBP. The preferred binding of charged nicotine over neutral nicotine originates from its stronger electrostatic interactions with AChBP, a cation-π interaction to a tryptophan residue and a hydrogen bond between nicotine and the backbone carbonyl of the tryptophan, whereas the major force driving the binding process appears to be van der Waals interactions. The various nonelectrostatic terms can also indirectly modulate the electrostatic interactions through fine-tuning the binding pose of the ligand in the binding site, providing an explanation of why the binding specificity of nicotine to the brain versus muscle nAChRs is driven by electrostatic interaction, given that the immediate binding site residues, including the key tryptophan residue, are identical in the two receptors.
生物分子结合依赖于两个配体分子之间的特定吸引力相互作用,包括静电、色散、疏水性和溶剂化。评估静电相互作用对结合的贡献是理解配体结合机制和设计改进的生物分子结合剂的关键。例如,尼古丁是烟碱型乙酰胆碱受体(nAChRs)的一种众所周知的激动剂,但尼古丁对大脑和肌肉 nAChRs 的不同作用的分子机制仍然难以捉摸。在这项工作中,我们选择了与尼古丁复合的乙酰胆碱结合蛋白(AChBP)作为模型系统,以研究静电相互作用对尼古丁结合的贡献。我们的绝对结合自由能模拟证实,尼古丁主要以其质子化(带电)形式结合 AChBP。通过比较中性或带电尼古丁的分解相互作用的能量贡献,我们的计算揭示了尼古丁与 AChBP 结合的性质。带电荷的尼古丁比中性尼古丁更优先结合,源于其与 AChBP 更强的静电相互作用,包括与色氨酸残基的阳离子-π 相互作用和尼古丁与色氨酸骨架羰基之间的氢键,而驱动结合过程的主要力似乎是范德华相互作用。各种非静电项也可以通过微调配体在结合位点的结合构象间接调节静电相互作用,这解释了为什么尼古丁对大脑与肌肉 nAChRs 的结合特异性受静电相互作用驱动,因为在两个受体中,直接的结合位点残基,包括关键的色氨酸残基,是相同的。