Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia.
Department of Prosthodontics, College of Dentistry, King Khalid University, Abha, Saudi Arabia.
BMC Oral Health. 2024 May 13;24(1):557. doi: 10.1186/s12903-024-04343-1.
Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation.
Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns.
SiO and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO-TRIS excelled in stiffness, BisGMA-SiO-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO-TRIS offered a balanced combination of mechanical properties.
These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.
牙科树脂基复合材料以其美学吸引力和黏附性能而被广泛认可,这使它们成为现代修复牙科的重要组成部分。尽管具有这些优势,但黏附性和生物力学性能方面的挑战仍然存在,需要创新策略来加以改进。本研究通过使用分子对接和动力学模拟来解决牙科树脂基复合材料在黏附性和生物力学性能方面的挑战。
分子对接评估结合能,并提供单体、填料和偶联剂之间相互作用的有价值的见解。本研究优先考虑 SiO 和 TRIS,因为它们具有一致的影响。使用 Forcite 模块和 COMPASS II 力场进行分子动力学模拟,将分析扩展到牙科复合复合物的机械性能。模拟包括能量最小化、受控 NVT 和 NPT 系综模拟以及平衡阶段。值得注意的是,分子动力学模拟持续了 50ns。
SiO 和 TRIS 一直是有影响力的成分,展示了它们在促进固体相互作用方面的多功能性。相关矩阵强调了范德华和去溶剂化能在确定整体结合能方面的重要作用。分子动力学模拟提供了对牙科复合复合物机械性能的深入了解。HEMA-SiO-TRIS 在刚度方面表现出色,BisGMA-SiO-TRIS 在抗弯强度方面表现出色,而 EBPADMA-SiO-TRIS 则提供了机械性能的平衡组合。
这些发现为优化牙科复合材料以满足不同的临床需求提供了有价值的见解。虽然 EBPADMA-SiO-TRIS 表现出明显的优势,但本研究强调需要进一步研究。未来的研究应通过实验验证计算结果,并评估材料对动态环境因素的反应。