Xia Lianghao, Huang Chao, Xu Yong, Dai Peng, Bo Liefeng
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5473-5487. doi: 10.1109/TNNLS.2022.3204775. Epub 2024 Apr 4.
Recommender systems have been demonstrated to be effective to meet user's personalized interests for many online services (e.g., E-commerce and online advertising platforms). Recent years have witnessed the emerging success of many deep-learning-based recommendation models for augmenting collaborative filtering (CF) architectures with various neural network architectures, such as multilayer perceptron and autoencoder. However, the majority of them model the user-item relationship with single type of interaction, while overlooking the diversity of user behaviors on interacting with items, which can be click, add-to-cart, tag-as-favorite, and purchase. Such various types of interaction behaviors have great potential in providing rich information for understanding the user preferences. In this article, we pay special attention on user-item relationships with the exploration of multityped user behaviors. Technically, we contribute a new multi-behavior graph neural network (MBRec), which specially accounts for diverse interaction patterns and the underlying cross-type behavior interdependencies. In the MBRec framework, we develop a graph-structured learning framework to perform expressive modeling of high-order connectivity in behavior-aware user-item interaction graph. After that, a mutual relationship encoder is proposed to adaptively uncover complex relational structures and make aggregations across layer-specific behavior representations. Through comprehensive evaluation on real-world datasets, the advantages of our MBRec method have been validated under different experimental settings. Further analysis verifies the positive effects of incorporating the multi-behavioral context into the recommendation paradigm. In addition, the conducted case studies offer insights into the interpretability of user multi-behavior representations. We release our model implementation at https://github.com/akaxlh/MBRec.
推荐系统已被证明能有效地满足许多在线服务(如电子商务和在线广告平台)中用户的个性化兴趣。近年来,许多基于深度学习的推荐模型取得了成功,这些模型通过多层感知器和自动编码器等各种神经网络架构增强协同过滤(CF)架构。然而,它们中的大多数都使用单一类型的交互来建模用户-物品关系,而忽略了用户与物品交互时行为的多样性,这些行为可以是点击、加入购物车、标记为收藏和购买。这种各种类型的交互行为在提供丰富信息以理解用户偏好方面具有巨大潜力。在本文中,我们通过探索多类型用户行为,特别关注用户-物品关系。从技术上讲,我们提出了一种新的多行为图神经网络(MBRec),它专门考虑了不同的交互模式和潜在的跨类型行为相互依赖关系。在MBRec框架中,我们开发了一个图结构学习框架,以对行为感知的用户-物品交互图中的高阶连通性进行表达性建模。之后,提出了一种相互关系编码器,以自适应地揭示复杂的关系结构,并在特定层的行为表示之间进行聚合。通过对真实世界数据集的全面评估,我们的MBRec方法在不同实验设置下的优势得到了验证。进一步的分析验证了将多行为上下文纳入推荐范式的积极效果。此外,所进行的案例研究为用户多行为表示的可解释性提供了见解。我们在https://github.com/akaxlh/MBRec上发布了我们的模型实现。