Suppr超能文献

Accurate multi-behavior sequence-aware recommendation via graph convolution networks.

作者信息

Kim Doyeon, Tanwar Saurav, Kang U

机构信息

Seoul National University, Seoul, Republic of Korea.

出版信息

PLoS One. 2025 Jan 7;20(1):e0314282. doi: 10.1371/journal.pone.0314282. eCollection 2025.

Abstract

How can we recommend items to users utilizing multiple types of user behavior data? Multi-behavior recommender systems leverage various types of user behavior data to enhance recommendation performance for the target behavior. These systems aim to provide personalized recommendations, thereby improving user experience, engagement, and satisfaction across different applications such as e-commerce platforms, streaming services, news websites, and content platforms. While previous approaches in multi-behavior recommendation have focused on incorporating behavioral order and dependencies into embedding learning, they often overlook the nuanced importance of individual behaviors in shaping user preferences during model training. We propose MBA (Multi-Behavior sequence-Aware recommendation via graph convolution networks), an accurate framework for multi-behavior recommendations. MBA adopts a novel approach by learning embeddings that capture both the dependencies between behaviors and their relative importance in influencing user preferences. Additionally, MBA employs sophisticated sampling strategies that consider the sequential nature of behaviors during model training, ensuring that the model effectively learns from the entire behavioral sequence. Through extensive experiments on real-world datasets, we demonstrate the superior performance of MBA compared to existing methods. MBA outperforms the best competitor, achieving improvements of up to 11.2% and 11.4% in terms of HR@10 and nDCG@10, respectively. These findings underscore the effectiveness of MBA in providing accurate and personalized recommendations tailored to individual user preferences.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb07/11706469/b5d76a2f0378/pone.0314282.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验