Suppr超能文献

基于机器人法兰特征的亚毫米精度无标记手眼校准

Submillimeter-Accurate Markerless Hand-Eye Calibration Based on a Robot's Flange Features.

作者信息

Đalić Velibor, Jovanović Vedran, Marić Petar

机构信息

Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina.

出版信息

Sensors (Basel). 2024 Feb 7;24(4):1071. doi: 10.3390/s24041071.

Abstract

An accurate and reliable estimation of the transformation matrix between an optical sensor and a robot is a key aspect of the hand-eye system calibration process in vision-guided robotic applications. This paper presents a novel approach to markerless hand-eye calibration that achieves streamlined, flexible, and highly accurate results, even without error compensation. The calibration procedure is mainly based on using the robot's tool center point (TCP) as the reference point. The TCP coordinate estimation is based on the robot's flange point cloud, considering its geometrical features. A mathematical model streamlining the conventional marker-based hand-eye calibration is derived. Furthermore, a novel algorithm for the automatic estimation of the flange's geometric features from its point cloud, based on a 3D circle fitting, the least square method, and a nearest neighbor (NN) approach, is proposed. The accuracy of the proposed algorithm is validated using a calibration setting ring as the ground truth. Furthermore, to establish the minimal required number and configuration of calibration points, the impact of the number and the selection of the unique robot's flange positions on the calibration accuracy is investigated and validated by real-world experiments. Our experimental findings strongly indicate that our hand-eye system, employing the proposed algorithm, enables the estimation of the transformation between the robot and the 3D scanner with submillimeter accuracy, even when using the minimum of four non-coplanar points for calibration. Our approach improves the calibration accuracy by approximately four times compared to the state of the art, while eliminating the need for error compensation. Moreover, our calibration approach reduces the required number of the robot's flange positions by approximately 40%, and even more if the calibration procedure utilizes just four properly selected flange positions. The presented findings introduce a more efficient hand-eye calibration procedure, offering a superior simplicity of implementation and increased precision in various robotic applications.

摘要

在视觉引导机器人应用中,准确可靠地估计光学传感器与机器人之间的变换矩阵是手眼系统校准过程的关键环节。本文提出了一种新颖的无标记手眼校准方法,即使在没有误差补偿的情况下,也能实现简化、灵活且高精度的校准结果。校准过程主要基于将机器人的工具中心点(TCP)作为参考点。TCP坐标估计基于机器人法兰点云,并考虑其几何特征。推导了简化传统基于标记的手眼校准的数学模型。此外,还提出了一种基于三维圆拟合、最小二乘法和最近邻(NN)方法,从法兰点云自动估计其几何特征的新算法。使用校准设置环作为基准真值验证了所提算法的准确性。此外,为了确定校准点的最小所需数量和配置,通过实际实验研究并验证了校准点数量和独特机器人法兰位置的选择对校准精度的影响。我们的实验结果有力地表明,即使在校准中使用最少四个非共面点,采用所提算法的手眼系统也能以亚毫米精度估计机器人与三维扫描仪之间的变换。与现有技术相比,我们的方法将校准精度提高了约四倍,同时无需误差补偿。此外,我们的校准方法将所需的机器人法兰位置数量减少了约40%,如果校准过程仅使用四个适当选择的法兰位置,减少幅度会更大。所呈现的研究结果引入了一种更高效的手眼校准方法,在各种机器人应用中实现起来更加简便且精度更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/471b/10892941/8828e106f1f4/sensors-24-01071-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验