Department of Water Science & Engineering, College of Agriculture, Vali-E-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan, Iran.
Department of Water Engineering, Semnan University, Semnan, Iran.
Environ Sci Pollut Res Int. 2023 Feb;30(8):20887-20906. doi: 10.1007/s11356-022-23653-x. Epub 2022 Oct 20.
Reliable prediction of wheat yield ahead of harvest is a critical challenge for decision-makers along the supply chain. Predicting wheat yield is a real challenge for better agriculture and food security management. Modeling wheat yield is complex and challenging, so robust tools are needed. The main aim of this study is to predict wheat yield using an advanced ensemble model. A multilayer perceptron model (MLP) was combined with optimization algorithms to determine MLP parameters as the first step in the study. Several optimization algorithms were used as optimizers, including Particle Swarm Optimization (PSO), Honey Badger Algorithms (HBA), Sine-Cosine Algorithms (SCA), and Shark Algorithms (SA). Meteorological data were inserted into models. Next, the outputs of optimized MLP models were incorporated into an inclusive multiple MLP model (IMM). A new hybrid gamma test was used to determine the most appropriate input combination. A hybrid gamma test was created by coupling the HBA with GT. This paper introduces a robust IMM model, develops an MLP model using optimization algorithms, develops a new hybrid gamma test, uses Generalized Likelihood Uncertainty Estimation (GLUE) to analyze uncertainty, and presents a spatial map of wheat yield prediction. Based on the Gamma Test analysis, mean air temperature (T), wind speed (WS), relative humidity (RH), evapotranspiration (ET), and precipitation (P) were the most important input parameters for reliable and accurate winter wheat yield predictions. At the testing level, the IMM model decreased the mean absolute error (MAE) of the MLP-HBA, MLP-SCA, MLP-SA, MLP-PSO, and MLP models by 47%, 52%, 55%, 58%, and 61%, respectively. In the study, the uncertainty of models based on input data was significantly lower than that of the model parameters. In addition, the GLUE analysis revealed that the wheat yield predictions were more stable and confident by considering the ensemble IMM technique. The pattern of root mean square error (RMSE) maps demonstrated that higher error produces in the northeast of Urmia Lake. The developed framework provides insight into rainfed yield responses to weather conditions and is simple and inexpensive. Accurate and reliable wheat yield prediction is essential for agricultural monitoring and food policy analysis.
在收获前可靠地预测小麦产量是供应链中决策者面临的一项关键挑战。预测小麦产量是实现更好的农业和粮食安全管理的一个真正挑战。建立小麦产量模型是复杂而具有挑战性的,因此需要强大的工具。本研究的主要目的是使用先进的集成模型预测小麦产量。在研究的第一步中,将多层感知器模型(MLP)与优化算法相结合,以确定 MLP 参数。使用几种优化算法作为优化器,包括粒子群优化算法(PSO)、蜜獾算法(HBA)、正弦余弦算法(SCA)和鲨鱼算法(SA)。气象数据被插入到模型中。接下来,优化后的 MLP 模型的输出被合并到一个集成的多 MLP 模型(IMM)中。使用新的混合伽马检验来确定最合适的输入组合。通过将 HBA 与 GT 耦合创建了一种混合伽马检验。本文提出了一种稳健的 IMM 模型,使用优化算法开发了 MLP 模型,开发了一种新的混合伽马检验,使用广义似然不确定性估计(GLUE)分析不确定性,并展示了小麦产量预测的空间图。基于伽马测试分析,平均空气温度(T)、风速(WS)、相对湿度(RH)、蒸散量(ET)和降水量(P)是可靠准确预测冬小麦产量的最重要输入参数。在测试水平上,与 MLP-HBA、MLP-SCA、MLP-SA、MLP-PSO 和 MLP 模型相比,IMM 模型分别将 MLP 模型的平均绝对误差(MAE)降低了 47%、52%、55%、58%和 61%。在研究中,基于输入数据的模型不确定性明显低于模型参数的不确定性。此外,GLUE 分析表明,考虑集成 IMM 技术,小麦产量预测更加稳定和可靠。均方根误差(RMSE)图的模式表明,乌尔米耶湖东北部的误差较大。所开发的框架提供了对雨养产量对天气条件的响应的深入了解,并且简单且廉价。准确可靠的小麦产量预测对于农业监测和粮食政策分析至关重要。