Department of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey.
Department of Software Engineering, Istanbul Aydin University, Istanbul, Turkey.
Comput Intell Neurosci. 2022 Mar 25;2022:1612468. doi: 10.1155/2022/1612468. eCollection 2022.
The hypercube optimization search (HOS) approach is a new efficient and robust metaheuristic algorithm that simulates the dove's movement in quest of new food sites in nature, utilizing hypercubes to depict the search zones. In medical informatics, the classification of medical data is one of the most challenging tasks because of the uncertainty and nature of healthcare data. This paper proposes the use of the HOS algorithm for training multilayer perceptrons (MLP), one of the most extensively used neural networks (NNs), to enhance its efficacy as a decision support tool for medical data classification. The proposed HOS-MLP model is tested on four significant medical datasets: orthopedic patients, diabetes, coronary heart disease, and breast cancer, to assess HOS's success in training MLP. For verification, the results are compared with eleven different classifiers and eight well-regarded MLP trainer metaheuristic algorithms: particle swarm optimization (PSO), biogeography-based optimizer (BBO), the firefly algorithm (FFA), artificial bee colony (ABC), genetic algorithm (GA), bat algorithm (BAT), monarch butterfly optimizer (MBO), and the flower pollination algorithm (FPA). The experimental results demonstrate that the MLP trained by HOS outperforms the other comparative models regarding mean square error (MSE), classification accuracy, and convergence rate. The findings also reveal that the HOS help the MLP to produce more accurate results than other classification algorithms for the prediction of diseases.
超立方体优化搜索(HOS)方法是一种新的高效和强大的元启发式算法,它模拟了鸽子在自然界中寻找新食物地点的运动,利用超立方体来描述搜索区域。在医学信息学中,医学数据的分类是最具挑战性的任务之一,因为医疗保健数据的不确定性和性质。本文提出了使用 HOS 算法训练多层感知机(MLP),这是最广泛使用的神经网络(NN)之一,以增强其作为医学数据分类决策支持工具的功效。所提出的 HOS-MLP 模型在四个重要的医学数据集上进行了测试:骨科患者、糖尿病、冠心病和乳腺癌,以评估 HOS 在训练 MLP 方面的成功。为了验证,将结果与十一种不同的分类器和八种著名的 MLP 训练元启发式算法进行了比较:粒子群优化(PSO)、基于生物地理学的优化器(BBO)、萤火虫算法(FFA)、人工蜂群(ABC)、遗传算法(GA)、蝙蝠算法(BAT)、帝王蝶优化器(MBO)和花授粉算法(FPA)。实验结果表明,HOS 训练的 MLP 在均方误差(MSE)、分类精度和收敛速度方面优于其他比较模型。研究结果还表明,HOS 有助于 MLP 产生比其他分类算法更准确的疾病预测结果。