Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
Department of Biological Sciences, The George Washington University, Washington, DC, USA.
Science. 2022 Oct 21;378(6617):304-308. doi: 10.1126/science.abi9407. Epub 2022 Oct 20.
Butterfly wing patterns derive from a deeply conserved developmental ground plan yet are diverse and evolve rapidly. It is poorly understood how gene regulatory architectures can accommodate both deep homology and adaptive change. To address this, we characterized the cis-regulatory evolution of the color pattern gene in nymphalid butterflies. Comparative assay for transposase-accessible chromatin using sequencing (ATAC-seq) and in vivo deletions spanning 46 cis-regulatory elements across five species revealed deep homology of ground plan-determining sequences, except in monarch butterflies. Furthermore, noncoding deletions displayed both positive and negative regulatory effects that were often broad in nature. Our results provide little support for models predicting rapid enhancer turnover and suggest that deeply ancestral, multifunctional noncoding elements can underlie rapidly evolving trait systems.
蝴蝶翅膀的图案源自一个深度保守的发育基础蓝图,但却具有多样性并快速进化。基因调控架构如何既能容纳深度同源性又能适应变化,这一点还不太清楚。为了解决这个问题,我们对鳞翅目蝴蝶的颜色图案基因的顺式调控区进化进行了特征描述。使用测序的转座酶可及染色质比较分析(ATAC-seq)和跨越五个物种的 46 个顺式调控元件的体内缺失实验,揭示了除了黑脉金斑蝶之外,决定基础模式的序列具有深度同源性。此外,非编码缺失显示出正负调节效应,且通常具有广泛的性质。我们的结果几乎不支持预测快速增强子更替的模型,并表明深度祖先的多功能非编码元件可以为快速进化的特征系统提供基础。