Suppr超能文献

三维分形维数和空隙度特征可能可以无创性预测 2 级脑膜瘤的 TERT 启动子突变状态。

Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas.

机构信息

Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.

Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea.

出版信息

PLoS One. 2022 Oct 20;17(10):e0276342. doi: 10.1371/journal.pone.0276342. eCollection 2022.

Abstract

PURPOSE

The 2021 World Health Organization classification includes telomerase reverse transcriptase promoter (TERTp) mutation status as a factor for differentiating meningioma grades. Therefore, preoperative prediction of TERTp mutation may assist in clinical decision making. However, no previous study has applied fractal analysis for TERTp mutation status prediction in meningiomas. The purpose of this study was to assess the utility of three-dimensional (3D) fractal analysis for predicting the TERTp mutation status in grade 2 meningiomas.

METHODS

Forty-eight patients with surgically confirmed grade 2 meningiomas (41 TERTp-wildtype and 7 TERTp-mutant) were included. 3D fractal dimension (FD) and lacunarity values were extracted from the fractal analysis. A predictive model combining clinical, conventional, and fractal parameters was built using logistic regression analysis. Receiver operating characteristic curve analysis was used to assess the ability of the model to predict TERTp mutation status.

RESULTS

Patients with TERTp-mutant grade 2 meningiomas were older (P = 0.029) and had higher 3D FD (P = 0.026) and lacunarity (P = 0.004) values than patients with TERTp-wildtype grade 2 meningiomas. On multivariable logistic analysis, higher 3D FD values (odds ratio = 32.50, P = 0.039) and higher 3D lacunarity values (odds ratio = 20.54, P = 0.014) were significant predictors of TERTp mutation status. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.84 (95% confidence interval 0.71-0.93), 83.3%, 71.4%, and 85.4%, respectively.

CONCLUSION

3D FD and lacunarity may be useful imaging biomarkers for predicting TERTp mutation status in grade 2 meningiomas.

摘要

目的

2021 年世界卫生组织分类将端粒酶逆转录酶启动子(TERTp)突变状态作为区分脑膜瘤分级的因素之一。因此,术前预测 TERTp 突变可能有助于临床决策。然而,以前没有研究应用分形分析来预测脑膜瘤中的 TERTp 突变状态。本研究旨在评估三维(3D)分形分析在预测 2 级脑膜瘤 TERTp 突变状态中的效用。

方法

纳入 48 例经手术证实的 2 级脑膜瘤患者(41 例 TERTp 野生型和 7 例 TERTp 突变型)。从分形分析中提取 3D 分形维数(FD)和空隙度值。使用逻辑回归分析建立了一个结合临床、常规和分形参数的预测模型。使用受试者工作特征曲线分析评估模型预测 TERTp 突变状态的能力。

结果

TERTp 突变型 2 级脑膜瘤患者年龄较大(P = 0.029),3D FD(P = 0.026)和空隙度(P = 0.004)值较高。多变量逻辑分析显示,较高的 3D FD 值(优势比=32.50,P = 0.039)和较高的 3D 空隙度值(优势比=20.54,P = 0.014)是 TERTp 突变状态的显著预测因素。多变量模型的曲线下面积、准确性、敏感度和特异度分别为 0.84(95%置信区间 0.71-0.93)、83.3%、71.4%和 85.4%。

结论

3D FD 和空隙度可能是预测 2 级脑膜瘤 TERTp 突变状态的有用成像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb20/9584385/9f868d2b557d/pone.0276342.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验