Menger Frank, Celma Alberto, Schymanski Emma L, Lai Foon Yin, Bijlsma Lubertus, Wiberg Karin, Hernández Félix, Sancho Juan V, Ahrens Lutz
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain.
Environ Int. 2022 Dec;170:107585. doi: 10.1016/j.envint.2022.107585. Epub 2022 Oct 14.
Identification of bioaccumulating contaminants of emerging concern (CECs) via suspect and non-target screening remains a challenging task. In this study, ion mobility separation with high-resolution mass spectrometry (IM-HRMS) was used to investigate the effects of drift time (DT) alignment on spectrum quality and peak annotation for screening of CECs in complex sample matrices using data independent acquisition (DIA). Data treatment approaches (Binary Sample Comparison) and prioritisation strategies (Halogen Match, co-occurrence of features in biota and the water phase) were explored in a case study on zebra mussel (Dreissena polymorpha) in Lake Mälaren, Sweden's largest drinking water reservoir. DT alignment evidently improved the fragment spectrum quality by increasing the similarity score to reference spectra from on average (±standard deviation) 0.33 ± 0.31 to 0.64 ± 0.30 points, thus positively influencing structure elucidation efforts. Thirty-two features were tentatively identified at confidence level 3 or higher using MetFrag coupled with the new PubChemLite database, which included predicted collision cross-section values from CCSbase. The implementation of predicted mobility data was found to support compound annotation. This study illustrates a quantitative assessment of the benefits of IM-HRMS on spectral quality, which will enhance the performance of future screening studies of CECs in complex environmental matrices.
通过可疑物和非目标物筛查来识别新出现的具有生物累积性的污染物(CECs)仍然是一项具有挑战性的任务。在本研究中,采用离子淌度分离与高分辨率质谱联用技术(IM-HRMS),利用数据非依赖采集(DIA),研究淌度时间(DT)校准对复杂样品基质中CECs筛查的光谱质量和峰注释的影响。在瑞典最大的饮用水水库梅拉伦湖的斑马贻贝(Dreissena polymorpha)案例研究中,探索了数据处理方法(二元样品比较)和优先级策略(卤素匹配、生物群和水相中特征的共现)。DT校准通过将与参考光谱的相似度得分从平均(±标准差)0.33±0.31提高到0.64±0.30分,显著改善了碎片光谱质量,从而对结构解析工作产生了积极影响。使用MetFrag结合新的PubChemLite数据库,在置信水平3或更高水平上初步鉴定出32个特征,该数据库包括来自CCSbase的预测碰撞截面值。发现预测淌度数据的实施有助于化合物注释。本研究说明了对IM-HRMS对光谱质量的益处进行定量评估,这将提高未来在复杂环境基质中对CECs进行筛查研究的性能。