Suppr超能文献

医学影像学中因果关系很重要。

Causality matters in medical imaging.

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

出版信息

Nat Commun. 2020 Jul 22;11(1):3673. doi: 10.1038/s41467-020-17478-w.

Abstract

Causal reasoning can shed new light on the major challenges in machine learning for medical imaging: scarcity of high-quality annotated data and mismatch between the development dataset and the target environment. A causal perspective on these issues allows decisions about data collection, annotation, preprocessing, and learning strategies to be made and scrutinized more transparently, while providing a detailed categorisation of potential biases and mitigation techniques. Along with worked clinical examples, we highlight the importance of establishing the causal relationship between images and their annotations, and offer step-by-step recommendations for future studies.

摘要

因果推理可以为医学影像机器学习中的主要挑战带来新的启示

高质量标注数据的稀缺性,以及开发数据集与目标环境之间的不匹配。从因果角度看待这些问题,可以更透明地做出关于数据收集、标注、预处理和学习策略的决策,并对潜在的偏差和缓解技术进行详细分类。我们结合实际的临床案例,强调了在图像与其标注之间建立因果关系的重要性,并为未来的研究提供了逐步的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/7376027/b5f444887c82/41467_2020_17478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验