Zhong Xiao-Cong, Wang Qisong, Liu Dan, Chen Zhihuang, Liao Jing-Xiao, Sun Jinwei, Zhang Yudong, Fan Feng-Lei
IEEE J Biomed Health Inform. 2025 Apr;29(4):2484-2495. doi: 10.1109/JBHI.2024.3431230. Epub 2025 Apr 4.
Motorimagery EEG classification plays a crucial role in non-invasive Brain-Computer Interface (BCI) research. However, the performance of classification is affected by the non-stationarity and individual variations of EEG signals. Simply pooling EEG data with different statistical distributions to train a classification model can severely degrade the generalization performance. To address this issue, the existing methods primarily focus on domain adaptation, which requires access to the test data during training. This is unrealistic and impractical in many EEG application scenarios. In this paper, we propose a novel multi-source domain generalization framework called EEG-DG, which leverages multiple source domains with different statistical distributions to build generalizable models on unseen target EEG data. We optimize both the marginal and conditional distributions to ensure the stability of the joint distribution across source domains and extend it to a multi-source domain generalization framework to achieve domain-invariant feature representation, thereby alleviating calibration efforts. Systematic experiments conducted on a simulative dataset, BCI competition IV 2a, 2b, and OpenBMI datasets, demonstrate the superiority and competitive performance of our proposed framework over other state-of-the-art methods. Specifically, EEG-DG achieves average classification accuracies of 81.79% and 87.12% on datasets IV-2a and IV-2b, respectively, and 78.37% and 76.94% for inter-session and inter-subject evaluations on dataset OpenBMI, which even outperforms some domain adaptation methods.
运动想象脑电信号分类在非侵入式脑机接口(BCI)研究中起着至关重要的作用。然而,分类性能会受到脑电信号的非平稳性和个体差异的影响。简单地将具有不同统计分布的脑电数据集中起来训练分类模型会严重降低泛化性能。为了解决这个问题,现有方法主要集中在域适应上,这需要在训练期间访问测试数据。这在许多脑电应用场景中是不现实且不切实际的。在本文中,我们提出了一种名为EEG-DG的新型多源域泛化框架,该框架利用具有不同统计分布的多个源域来对未见过的目标脑电数据构建可泛化模型。我们同时优化边缘分布和条件分布,以确保跨源域联合分布的稳定性,并将其扩展到多源域泛化框架以实现域不变特征表示,从而减轻校准工作。在模拟数据集、BCI竞赛IV 2a、2b和OpenBMI数据集上进行的系统实验表明,我们提出的框架相对于其他现有方法具有优越性和竞争力。具体而言,EEG-DG在数据集IV-2a和IV-2b上分别实现了81.79%和87.12%的平均分类准确率,在OpenBMI数据集的会话间和受试者间评估中分别达到了78.37%和76.94%,甚至优于一些域适应方法。