The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, U.S.A.
Biochem J. 2022 Nov 11;479(21):2297-2309. doi: 10.1042/BCJ20220438.
If left unrepaired, the major oxidative DNA lesion 7,8-dihydro-8-oxoguanine (oxoG) promotes G-to-T transversions by favorably adopting a syn conformation and base pairing with dATP during replication. The human oxoG DNA glycosylase hOGG1 senses and removes oxoG amid millions-fold excess of guanine, thereby counteracting the genotoxic effects of the major oxidative damage. Crystal structures of hOGG1 in complex with oxoG-containing DNA have provided key insights into the lesion recognition and catalysis mechanisms of the enzyme. These lesion-recognition complex (LRC) structures typically involve a catalytically inactive hOGG1 mutant, where one of the catalytic-site amino acid residues is mutated to prevent the cleavage of oxoG. The use of a catalytically incompetent hOGG1 mutant has thus precluded understanding of unscathed interactions between oxoG and hOGG1 catalytic site as well as interactions among catalytic-site amino acid residues. As an orthogonal approach to visualize such interactions, we have co-crystallized a catalytically competent hOGG1 bound to 2'-fluoro-oxodG-containing DNA, a transition state destabilizing inhibitor that binds hOGG1 but is not processed by the enzyme. In this fluorinated lesion-recognition complex (FLRC), the 8-oxo moiety of oxoG is recognized by Gly42 and the Watson-Crick edge of oxoG is contacted by Gln315 and Pro266. The previously observed salt bridge between Lys249 and Cys253 is lacking in the FLRC, suggesting Lys249 is primed by Cys253 and poised for nucleophilic attack on C1' of oxodG. Overall, hOGG1 FLRC marks the first structure of oxoG presented into an intact catalytic site of hOGG1 and provides complementary insights into the glycosylase mechanisms of the enzyme.
如果不进行修复,主要的氧化 DNA 损伤 7,8-二氢-8-氧鸟嘌呤(oxoG)通过在复制过程中有利地采用顺式构象并与 dATP 碱基配对,促进 G 到 T 的颠换。人氧化鸟嘌呤 DNA 糖苷酶 hOGG1 感知并去除 oxoG,同时在数百万倍的鸟嘌呤过剩中,从而抵消主要氧化损伤的遗传毒性影响。hOGG1 与含 oxoG 的 DNA 复合物的晶体结构为酶的损伤识别和催化机制提供了关键见解。这些损伤识别复合物(LRC)结构通常涉及一种催化失活的 hOGG1 突变体,其中一个催化位点的氨基酸残基发生突变以防止 oxoG 的切割。因此,使用催化失活的 hOGG1 突变体排除了对 oxoG 与 hOGG1 催化位点之间以及催化位点氨基酸残基之间未受损相互作用的理解。作为可视化这些相互作用的正交方法,我们共结晶了与 2'-氟代氧代脱氧鸟嘌呤(一种过渡态稳定抑制剂,与 hOGG1 结合但不被酶加工)结合的催化有效的 hOGG1。在这个氟化的损伤识别复合物(FLRC)中,oxoG 的 8-氧部分被 Gly42 识别,oxoG 的 Watson-Crick 边缘由 Gln315 和 Pro266 接触。以前观察到的 Lys249 和 Cys253 之间的盐桥在 FLRC 中不存在,表明 Lys249 由 Cys253 引发,并准备对 oxodG 的 C1'进行亲核攻击。总体而言,hOGG1 FLRC 标志着第一个将 oxoG 呈现到完整的 hOGG1 催化位点的结构,并为酶的糖苷酶机制提供了互补的见解。