Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
Institut Universitaire de France, 75005 Paris, France.
Acc Chem Res. 2022 Nov 1;55(21):3125-3135. doi: 10.1021/acs.accounts.2c00098. Epub 2022 Oct 21.
Fluorescent labels and biosensors play central roles in biological and medical research. Targeted to specific biomolecules or cells, they allow noninvasive imaging of the machinery that govern cells and organisms in real time. Recently, chemogenetic reporters made of organic dyes specifically anchored to genetic tags have challenged the paradigm of fully genetically encoded fluorescent proteins. Combining the advantage of synthetic fluorophores with the targeting selectivity of genetically encoded tags, these chemogenetic reporters open new exciting prospects for studying cell biochemistry and biology. In this Account, we present the growing toolbox of fluorescence-activating and absorption-shifting tags (FASTs), small monomeric proteins of 14 kDa (125 amino acids residues) that can be used as markers to monitor gene expression and protein localization in live cells and organisms. Engineered by directed protein evolution from the photoactive yellow protein (PYP) from the bacterium , prototypical FAST binds and stabilizes the fluorescent state of live-cell compatible hydroxybenzylidene rhodanine chromophores. This class of chromophores are normally dark when free in solution or in cells because they dissipate light energy through nonradiative processes. The protein cavity of FAST allows the stabilization of the deprotonated state of the chromophore and blocks the chromophore into a planar conformation, which leads to highly fluorescent protein-chromophore assemblies. The use of such fluorogenic dyes (also called fluorogens) enables the imaging of FAST fusion proteins in cells with high contrast without the need to remove unbound ligands through separate washing steps. Fluorogens with various spectral properties exist nowadays allowing investigators to adjust the spectral properties of FAST to their experimental conditions. Molecular engineering allowed furthermore to generate membrane-impermeant fluorogens for the selective labeling of cell-surface proteins. Over the years, we generated a collection of FAST variants with expanded spectral properties or fluorogen selectivity using a concerted strategy involving molecular engineering and directed protein evolution. Moreover, protein engineering allowed us to adapt FASTs for the design of fluorescent biosensors. Circular permutation enabled the generation of FAST variants with increased conformational flexibility for the design of biosensors in which fluorogen binding is conditioned to the recognition of a given analyte. Bisection of FASTs into two complementary fragments allowed us furthermore to create split variants with reversible complementation that allow the detection and imaging of dynamic protein-protein interactions. We provide, here, a general overview of the current state of development of these different systems and their applications for advanced live cell imaging and biosensing and discuss potential future directions.
荧光标记物和生物传感器在生物和医学研究中发挥着核心作用。它们针对特定的生物分子或细胞,允许实时非侵入性地对控制细胞和生物体的机制进行成像。最近,由专门固定在遗传标签上的有机染料制成的遗传化学报告基因挑战了完全遗传编码荧光蛋白的范式。这些遗传化学报告基因将合成荧光团的优势与遗传编码标签的靶向选择性结合在一起,为研究细胞生物化学和生物学开辟了新的令人兴奋的前景。在本述评中,我们介绍了不断发展的荧光激活和吸收移位标签(FASTs)工具箱,这些 FASTs 是 14 kDa(125 个氨基酸残基)的小单体蛋白,可以用作标记物,以监测活细胞和生物体中基因表达和蛋白质定位。这些 FASTs 是通过定向蛋白质进化从细菌中的光活性黄色蛋白(PYP)工程改造而来的,原型 FAST 结合并稳定活细胞相容的羟苄叉罗丹明生色团的荧光状态。这类生色团在溶液中或细胞中通常是暗的,因为它们通过非辐射过程耗散光能。FAST 的蛋白腔允许生色团的去质子化状态稳定,并将生色团锁定在平面构象中,从而导致高度荧光的蛋白-生色团组装。使用这种荧光染料(也称为荧光团)可以在无需通过单独的洗涤步骤去除未结合配体的情况下,以高对比度对 FAST 融合蛋白进行成像。如今,存在具有各种光谱特性的荧光团,这使得研究人员能够根据实验条件调整 FAST 的光谱特性。分子工程还允许为选择性标记细胞膜表面蛋白生成不透膜的荧光团。多年来,我们使用涉及分子工程和定向蛋白质进化的协同策略,生成了具有扩展光谱特性或荧光团选择性的一系列 FAST 变体。此外,蛋白质工程使我们能够为荧光生物传感器的设计改编 FAST。圆二向色性允许生成具有更高构象灵活性的 FAST 变体,用于设计荧光团结合条件是识别给定分析物的生物传感器。FAST 的二分法将其分成两个互补片段,允许创建具有可逆互补性的分裂变体,从而允许检测和成像动态蛋白质-蛋白质相互作用。在这里,我们提供了这些不同系统的当前发展状态的概述及其在高级活细胞成像和生物传感中的应用,并讨论了潜在的未来方向。