Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China.
ACS Appl Mater Interfaces. 2022 Nov 2;14(43):49375-49388. doi: 10.1021/acsami.2c15561. Epub 2022 Oct 21.
Antibacterial wound dressings are confronted with the challenges in real-time imaging of infected wounds and effective removal of bacterial debris after sterilization to promote the healing process. Herein, injectable theranostic hydrogels were constructed from antimicrobial peptide ε-polylysine (ePL) and polydopamine (PDA) nanoparticles for real-time diagnosis of infected wounds, imaging-guided antibacterial photodynamic therapy (PDT), and on-demand removal of bacterial debris. Ureido-pyrimidinone was conjugated on ePL to produce PLU hydrogels through quadruple hydrogen bonding, and the inoculation of tetrakis(4-carboxyphenyl)porphyrin (TCPP)-loaded PDA (PTc) nanoparticles introduced Schiff base linkages in PLU@PTc hydrogels. The double-cross-linked networks enhance mechanical performance, adhesion strength, and self-healing properties of hydrogels, and the dynamic cross-linking enables their photothermal removal. The injection of PLU precursors and PTc NPs generates in situ sol-gel transformation, and the acid-triggered release of TCPP restores fluorescence emissions for real-time imaging of infected wounds under 410 nm illumination. Then, the released TCPP in the infected wounds is illuminated at 660 nm to launch a precise antibacterial PDT, which is strengthened by the bacterial capture on hydrogels. Hydrogels with wrapped bacterial debris are removed under illumination at 808 nm, and the hydrogel dressing change accelerates healing of infected wounds through simultaneous relief of oxidative stress, regulation of inflammatory factors, acceleration of collagen deposition, and promotion of angiogenesis. Thus, this study demonstrates a feasible strategy for wound infection theranostics through bacterial infection-triggered visual imaging, efficient nonantibiotic sterilization, and on-demand dressing change and bacterial debris removal.
抗菌伤口敷料面临着在感染伤口实时成像和消毒后有效去除细菌碎片以促进愈合过程的挑战。在此,构建了由抗菌肽 ε-聚赖氨酸 (ePL) 和聚多巴胺 (PDA) 纳米粒子组成的可注射治疗性水凝胶,用于感染伤口的实时诊断、成像引导的抗菌光动力治疗 (PDT) 和按需去除细菌碎片。将尿嘧啶嘧啶酮接枝到 ePL 上,通过四重氢键生成 PLU 水凝胶,并接种负载四(4-羧基苯基)卟啉 (TCPP) 的 PDA (PTc) 纳米粒子,在 PLU@PTc 水凝胶中引入席夫碱键。双交联网络增强了水凝胶的机械性能、粘附强度和自修复性能,动态交联使其能够进行光热去除。PLU 前体和 PTc NPs 的注射产生原位溶胶-凝胶转化,并且 TCPP 的酸触发释放恢复了荧光发射,从而在 410nm 光照下实时成像感染伤口。然后,在感染的伤口中释放的 TCPP 在 660nm 光照射下启动精确的抗菌 PDT,该 PDT 由水凝胶上的细菌捕获得到增强。包裹有细菌碎片的水凝胶在 808nm 光照下被去除,水凝胶敷料的更换通过同时缓解氧化应激、调节炎症因子、加速胶原蛋白沉积和促进血管生成来加速感染伤口的愈合。因此,该研究通过细菌感染触发的可视化成像、高效非抗生素灭菌以及按需敷料更换和细菌碎片去除,展示了一种可行的伤口感染治疗策略。