III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany.
Department of Gastroenterology and Hepatology, Catholic University of Leuven (KUL), TARGID, University Hospital Leuven, Leuven, Belgium.
Endoscopy. 2022 Dec;54(12):1211-1231. doi: 10.1055/a-1950-5694. Epub 2022 Oct 21.
This ESGE Position Statement defines the expected value of artificial intelligence (AI) for the diagnosis and management of gastrointestinal neoplasia within the framework of the performance measures already defined by ESGE. This is based on the clinical relevance of the expected task and the preliminary evidence regarding artificial intelligence in artificial or clinical settings. MAIN RECOMMENDATIONS:: (1) For acceptance of AI in assessment of completeness of upper GI endoscopy, the adequate level of mucosal inspection with AI should be comparable to that assessed by experienced endoscopists. (2) For acceptance of AI in assessment of completeness of upper GI endoscopy, automated recognition and photodocumentation of relevant anatomical landmarks should be obtained in ≥90% of the procedures. (3) For acceptance of AI in the detection of Barrett's high grade intraepithelial neoplasia or cancer, the AI-assisted detection rate for suspicious lesions for targeted biopsies should be comparable to that of experienced endoscopists with or without advanced imaging techniques. (4) For acceptance of AI in the management of Barrett's neoplasia, AI-assisted selection of lesions amenable to endoscopic resection should be comparable to that of experienced endoscopists. (5) For acceptance of AI in the diagnosis of gastric precancerous conditions, AI-assisted diagnosis of atrophy and intestinal metaplasia should be comparable to that provided by the established biopsy protocol, including the estimation of extent, and consequent allocation to the correct endoscopic surveillance interval. (6) For acceptance of artificial intelligence for automated lesion detection in small-bowel capsule endoscopy (SBCE), the performance of AI-assisted reading should be comparable to that of experienced endoscopists for lesion detection, without increasing but possibly reducing the reading time of the operator. (7) For acceptance of AI in the detection of colorectal polyps, the AI-assisted adenoma detection rate should be comparable to that of experienced endoscopists. (8) For acceptance of AI optical diagnosis (computer-aided diagnosis [CADx]) of diminutive polyps (≤5 mm), AI-assisted characterization should match performance standards for implementing resect-and-discard and diagnose-and-leave strategies. (9) For acceptance of AI in the management of polyps ≥ 6 mm, AI-assisted characterization should be comparable to that of experienced endoscopists in selecting lesions amenable to endoscopic resection.
这份 ESGE 立场声明定义了人工智能(AI)在胃肠道肿瘤的诊断和管理中的预期价值,这是在 ESGE 已经定义的绩效指标框架内进行的。这是基于预期任务的临床相关性和人工智能在人工或临床环境中的初步证据。主要建议:(1) 为了接受 AI 用于评估上消化道内镜检查的完整性,AI 进行的黏膜检查应达到与经验丰富的内镜医生评估的同等水平。(2) 为了接受 AI 用于评估上消化道内镜检查的完整性,应在≥90%的操作中获得相关解剖标志的自动识别和摄影记录。(3) 为了接受 AI 用于检测 Barrett 高级上皮内瘤变或癌症,AI 辅助检测可疑病变进行靶向活检的检出率应与经验丰富的内镜医生(无论是否使用先进的成像技术)相当。(4) 为了接受 AI 用于 Barrett 肿瘤的管理,AI 辅助选择适合内镜切除的病变应与经验丰富的内镜医生相当。(5) 为了接受 AI 用于诊断胃癌前病变,AI 辅助诊断萎缩和肠化生的结果应与既定活检方案相当,包括对范围的估计,并相应分配到正确的内镜监测间隔。(6) 为了接受人工智能用于小肠胶囊内镜(SBCE)中的自动病变检测,AI 辅助阅读的性能应与经验丰富的内镜医生进行病变检测的性能相当,而不会增加但可能会减少操作者的阅读时间。(7) 为了接受 AI 用于检测结直肠息肉,AI 辅助腺瘤检出率应与经验丰富的内镜医生相当。(8) 为了接受 AI 光学诊断(计算机辅助诊断[CADx])微小息肉(≤5mm),AI 辅助特征应符合实施切除和丢弃以及诊断和保留策略的性能标准。(9) 为了接受 AI 用于管理≥6mm 的息肉,AI 辅助特征应与经验丰富的内镜医生在选择适合内镜切除的病变方面相当。
Best Pract Res Clin Gastroenterol. 2021
Therap Adv Gastroenterol. 2021-6-10
Clin Gastroenterol Hepatol. 2022-11
Commun Med (Lond). 2025-7-29
World J Gastrointest Endosc. 2025-7-16
Ther Adv Gastrointest Endosc. 2025-6-11