文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能辅助的食管胃十二指肠镜检查可提高处于培训初期的内镜医师的操作质量。

Artificial intelligence-assisted esophagogastroduodenoscopy improves procedure quality for endoscopists in early stages of training.

作者信息

Chan Shannon Melissa, Chan Daniel, Yip Hon Chi, Scheppach Markus Wolfgang, Lam Ray, Ng Stephen Kk, Ng Enders Kwok Wai, Chiu Philip W

机构信息

Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.

Surgery, UNSW St George & Sutherland, Kogarah, Australia.

出版信息

Endosc Int Open. 2025 Apr 15;13:a25476645. doi: 10.1055/a-2547-6645. eCollection 2025.


DOI:10.1055/a-2547-6645
PMID:40309064
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12042994/
Abstract

BACKGROUND AND STUDY AIMS: Completeness of esophagagogastroduodenoscopy (EGD) varies among endoscopists, leading to a high miss rate for gastric neoplasms. This study aimed to determine the effect of the Cerebro real-time artificial intelligence (AI) system on completeness of EGD for endoscopists in early stages of training. PATIENTS AND METHODS: The AI system was built with CNN and Motion Adaptive Temporal Feature Aggregation (MA-TFA). A prospective sequential cohort study was conducted. Endoscopists were taught about the standardized EGD protocol to examine 27 sites. Then, each subject performed diagnostic EGDs per protocol (control arm). After completion of the required sample size, subjects performed diagnostic EGDs with assistance of the AI (study arm). The primary outcome was the rate of completeness of EGD. Secondary outcomes included overall inspection time, individual site inspection time, completeness of photodocumentation, and rate of positive pathologies. RESULTS: A total of 466 EGDs were performed with 233 in each group. Use of AI significantly improved completeness of EGD [mean (SD) (92.6% (6.2%) vs 71.2% (16.8%)]; <0.001 (95% confidence interval 19.2%-23.8%, SD 0.012). There was no difference in overall mean (SD) inspection time [765.5 (338.4) seconds vs 740.4 (266.2); =0.374]. Mean (SD) number of photos for photo-documentation significantly increased in the AI group [26.9 (0.4) vs 10.3 (4.4); <0.001]. There was no difference in detection rates for pathologies in the two groups [8/233 (3.43%) vs 5/233 (2.16%), =0.399]. CONCLUSIONS: Completeness of EGD examination and photodocumentation by endoscopists in early stages of are improved by the AI-assisted software Cerebro.

摘要

背景与研究目的:食管胃十二指肠镜检查(EGD)的完整性在不同内镜医师之间存在差异,导致胃肿瘤的漏诊率较高。本研究旨在确定Cerebro实时人工智能(AI)系统对处于培训早期阶段的内镜医师进行EGD检查完整性的影响。 患者与方法:AI系统采用卷积神经网络(CNN)和运动自适应时间特征聚合(MA-TFA)构建。进行了一项前瞻性序贯队列研究。向内镜医师传授标准化的EGD检查方案以检查27个部位。然后,每个受试者按照方案进行诊断性EGD检查(对照组)。在达到所需样本量后,受试者在AI辅助下进行诊断性EGD检查(研究组)。主要结局是EGD检查的完整性率。次要结局包括总检查时间、各个部位的检查时间、摄影记录的完整性以及阳性病理结果率。 结果:共进行了466次EGD检查,每组233次。使用AI显著提高了EGD检查的完整性[均值(标准差)(92.6%(6.2%)对71.2%(16.8%)];P<0.001(95%置信区间19.2%-23.8%,标准差0.012)。总平均(标准差)检查时间无差异[765.5(338.4)秒对740.4(266.2);P=0.374]。AI组摄影记录的平均(标准差)照片数量显著增加[26.9(0.4)对10.3(4.4)];P<0.001。两组病理结果的检出率无差异[8/233(3.43%)对5/233(2.16%),P=0.399]。 结论:AI辅助软件Cerebro提高了处于早期阶段的内镜医师进行EGD检查及摄影记录的完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/07de10b785a4/10-1055-a-2547-6645_25482537.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/0d1248e5cb7e/10-1055-a-2547-6645_25482535.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/980fc56a639c/10-1055-a-2547-6645_25482536.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/07de10b785a4/10-1055-a-2547-6645_25482537.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/0d1248e5cb7e/10-1055-a-2547-6645_25482535.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/980fc56a639c/10-1055-a-2547-6645_25482536.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4907/12042994/07de10b785a4/10-1055-a-2547-6645_25482537.jpg

相似文献

[1]
Artificial intelligence-assisted esophagogastroduodenoscopy improves procedure quality for endoscopists in early stages of training.

Endosc Int Open. 2025-4-15

[2]
Artificial Intelligence as a Surrogate for Inspection Time to Assess Completeness in Esophagogastroduodenoscopy: A Prospective, Randomized, Noninferiority Study.

Clin Transl Gastroenterol. 2025-3-25

[3]
Evaluation of an artificial intelligence-based system for real-time high-quality photodocumentation during esophagogastroduodenoscopy.

Sci Rep. 2025-2-8

[4]
Role of artificial intelligence-guided esophagogastroduodenoscopy in assessing the procedural completeness and quality.

Indian J Gastroenterol. 2023-2

[5]
Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy.

Surg Endosc. 2022-1

[6]
Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial.

Gastrointest Endosc. 2020-2

[7]
Differences in upper gastrointestinal neoplasm detection rates based on inspection time and esophagogastroduodenoscopy training.

Endosc Int Open. 2018-10

[8]
Effect of a deep learning-based automatic upper GI endoscopic reporting system: a randomized crossover study (with video).

Gastrointest Endosc. 2023-8

[9]
Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement.

Endoscopy. 2022-12

[10]
Effectiveness of Artificial Intelligence in Screening Esophagogastroduodenoscopy.

Cureus. 2025-3-2

本文引用的文献

[1]
AGA Clinical Practice Update on High-Quality Upper Endoscopy: Expert Review.

Clin Gastroenterol Hepatol. 2024-5

[2]
Integrating artificial intelligence into endoscopy training: opportunities, challenges, and strategies.

Lancet Gastroenterol Hepatol. 2024-1

[3]
Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement.

Endoscopy. 2022-12

[4]
Endoscopy Training in the Age of Artificial Intelligence: Deep Learning or Artificial Competence?

Clin Gastroenterol Hepatol. 2023-1

[5]
JAG consensus statements for training and certification in oesophagogastroduodenoscopy.

Frontline Gastroenterol. 2022-1-24

[6]
Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot study.

Endoscopy. 2021-9

[7]
Implementation effect of institutional policy of EGD observation time on neoplasm detection.

Gastrointest Endosc. 2021-5

[8]
Guidelines for endoscopic diagnosis of early gastric cancer.

Dig Endosc. 2020-7

[9]
Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy.

Gut. 2019-3-11

[10]
Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks.

Gastrointest Endosc. 2018-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索