Suppr超能文献

细菌从限制中逃脱的速度。

Escaping speed of bacteria from confinement.

机构信息

School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.

Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taoyuan City, Taiwan.

出版信息

Biophys J. 2022 Dec 6;121(23):4656-4665. doi: 10.1016/j.bpj.2022.10.023. Epub 2022 Oct 21.

Abstract

Microswimmers such as bacteria exhibit large speed fluctuation when exploring their living environment. Here, we show that the bacterium Escherichia coli with a wide range of length speeds up beyond its free-swimming speed when passing through narrow and short confinement. The speedup is observed in two modes: for short bacteria with L <20 μm, the maximum speed occurs when the cell body leaves the confinement, but a flagellar bundle is still confined. For longer bacteria (L ≥ 20 μm), the maximum speed occurs when the middle of the cell, where the maximum number of flagellar bundles locate, is confined. The two speed-up modes are explained by a vanishing body drag and an increased flagella drag-a universal property of an "ideal swimmer." The spatial variance of speed can be quantitatively explained by a simple model based on the resistance matrix of a partially confined bacterium. The speed change depends on the distribution of motors, and the latter is confirmed by fluorescent imaging of flagellar hooks. By measuring the duration of slowdown and speedup, we find that the effective chemotaxis is biased in filamentous bacteria, which might benefit their survival. The experimental setup can be useful to study the motion of microswimmers near surfaces with different surface chemistry.

摘要

微观游泳者(如细菌)在探索其生活环境时会表现出很大的速度波动。在这里,我们表明,当通过狭窄和短的限制时,具有广泛速度范围的细菌 Escherichia coli 会加速超过其自由泳速度。这种加速以两种模式观察到:对于长度小于 20μm 的短细菌,当细胞体离开限制时会出现最大速度,但鞭毛束仍被限制。对于较长的细菌(L≥20μm),当细胞中部(鞭毛束数量最多的地方)受到限制时,会出现最大速度。这两种加速模式可以通过一个“理想游泳者”的通用特性——即身体阻力消失和鞭毛阻力增加来解释。基于部分受限细菌的阻力矩阵的简单模型,可以定量解释速度的空间变化。速度变化取决于马达的分布,后者通过鞭毛钩的荧光成像得到证实。通过测量减速和加速的持续时间,我们发现丝状细菌的有效趋化性存在偏差,这可能有利于它们的生存。该实验装置可用于研究具有不同表面化学性质的表面附近微观游泳者的运动。

相似文献

1
Escaping speed of bacteria from confinement.
Biophys J. 2022 Dec 6;121(23):4656-4665. doi: 10.1016/j.bpj.2022.10.023. Epub 2022 Oct 21.
2
Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2310952120. doi: 10.1073/pnas.2310952120. Epub 2023 Nov 22.
4
Motion of microswimmers in cylindrical microchannels.
Soft Matter. 2024 Mar 27;20(13):3007-3020. doi: 10.1039/d3sm01480k.
5
Bimetallic Microswimmers Speed Up in Confining Channels.
Phys Rev Lett. 2016 Nov 4;117(19):198001. doi: 10.1103/PhysRevLett.117.198001. Epub 2016 Nov 3.
6
Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1707-1712. doi: 10.1073/pnas.1714187115. Epub 2018 Feb 6.
7
Swimming of bacterium Bacillus subtilis with multiple bundles of flagella.
Soft Matter. 2019 Dec 11;15(48):10029-10034. doi: 10.1039/c9sm01790a.
8
Bacterial cell-body rotation driven by a single flagellar motor and by a bundle.
Biophys J. 2021 Jun 15;120(12):2454-2460. doi: 10.1016/j.bpj.2021.04.019. Epub 2021 Apr 29.
9
Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.
Biophys J. 1995 Nov;69(5):2154-62. doi: 10.1016/S0006-3495(95)80089-5.
10
Escherichia coli modulates its motor speed on sensing an attractant.
Arch Microbiol. 2016 Oct;198(8):827-33. doi: 10.1007/s00203-016-1255-z. Epub 2016 Jun 18.

引用本文的文献

1
Microbes in porous environments: from active interactions to emergent feedback.
Biophys Rev. 2024 Apr 19;16(2):173-188. doi: 10.1007/s12551-024-01185-7. eCollection 2024 Apr.

本文引用的文献

1
Non-Genetic Diversity in Chemosensing and Chemotactic Behavior.
Int J Mol Sci. 2021 Jun 28;22(13):6960. doi: 10.3390/ijms22136960.
2
Probing bacterial cell wall growth by tracing wall-anchored protein complexes.
Nat Commun. 2021 Apr 12;12(1):2160. doi: 10.1038/s41467-021-22483-8.
3
A transition to stable one-dimensional swimming enhances E. coli motility through narrow channels.
Nat Commun. 2020 May 11;11(1):2340. doi: 10.1038/s41467-020-15711-0.
4
Brownian fluctuations and hydrodynamics of a microhelix near a solid wall.
Sci Rep. 2020 Mar 12;10(1):4609. doi: 10.1038/s41598-020-61451-y.
5
Mechanisms for bacterial gliding motility on soft substrates.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25087-25096. doi: 10.1073/pnas.1914678116. Epub 2019 Nov 25.
6
Confinement and activity regulate bacterial motion in porous media.
Soft Matter. 2019 Dec 11;15(48):9920-9930. doi: 10.1039/c9sm01735f.
7
A Skeptic's Guide to Bacterial Mechanosensing.
J Mol Biol. 2020 Jan 17;432(2):523-533. doi: 10.1016/j.jmb.2019.09.004. Epub 2019 Oct 17.
8
Enhanced propagation of motile bacteria on surfaces due to forward scattering.
Nat Commun. 2019 Sep 11;10(1):4110. doi: 10.1038/s41467-019-12010-1.
9
Data-driven quantitative modeling of bacterial active nematics.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):777-785. doi: 10.1073/pnas.1812570116. Epub 2018 Dec 28.
10
Emergence of critically buckled motile helices under stress.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12979-12984. doi: 10.1073/pnas.1809374115. Epub 2018 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验