Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland.
Nat Commun. 2022 Oct 22;13(1):6298. doi: 10.1038/s41467-022-34032-y.
Self-supervised neural language models with attention have recently been applied to biological sequence data, advancing structure, function and mutational effect prediction. Some protein language models, including MSA Transformer and AlphaFold's EvoFormer, take multiple sequence alignments (MSAs) of evolutionarily related proteins as inputs. Simple combinations of MSA Transformer's row attentions have led to state-of-the-art unsupervised structural contact prediction. We demonstrate that similarly simple, and universal, combinations of MSA Transformer's column attentions strongly correlate with Hamming distances between sequences in MSAs. Therefore, MSA-based language models encode detailed phylogenetic relationships. We further show that these models can separate coevolutionary signals encoding functional and structural constraints from phylogenetic correlations reflecting historical contingency. To assess this, we generate synthetic MSAs, either without or with phylogeny, from Potts models trained on natural MSAs. We find that unsupervised contact prediction is substantially more resilient to phylogenetic noise when using MSA Transformer versus inferred Potts models.
最近,具有注意力机制的自监督神经语言模型已被应用于生物序列数据,从而推动了结构、功能和突变效应预测的发展。一些蛋白质语言模型,包括 MSA Transformer 和 AlphaFold 的 EvoFormer,将进化相关蛋白质的多重序列比对(MSA)作为输入。MSA Transformer 的行注意力的简单组合已经导致了最先进的无监督结构接触预测。我们证明了类似简单且通用的 MSA Transformer 列注意力的组合与 MSA 中序列之间的汉明距离强烈相关。因此,基于 MSA 的语言模型编码了详细的系统发育关系。我们进一步表明,这些模型可以将编码功能和结构约束的共进化信号与反映历史偶然性的系统发育相关性区分开来。为了评估这一点,我们从基于自然 MSA 训练的 Potts 模型生成了没有或具有系统发育的合成 MSA。我们发现,与推断的 Potts 模型相比,使用 MSA Transformer 进行无监督接触预测对系统发育噪声的鲁棒性要强得多。