Suppr超能文献

具有强艾伦效应的积分差分方程的波速和临界斑块大小。

Wave speed and critical patch size for integro-difference equations with a strong Allee effect.

机构信息

Department of Mathematics, University of Louisville, Louisville, KY, 40292, USA.

Department of Mathematics, SUNY Cortland, Cortland, NY, 13045, USA.

出版信息

J Math Biol. 2022 Oct 22;85(5):59. doi: 10.1007/s00285-022-01814-3.

Abstract

Simplified conditions are given for the existence and positivity of wave speed for an integro-difference equation with a strong Allee effect and an unbounded habitat. The results are used to obtain the existence of a critical patch size for an equation with a bounded habitat. It is shown that if the wave speed is positive there exists a critical patch size such that for a habitat size above the critical patch size solutions can persist in space, and if the wave speed is negative solutions always approach zero. An analytical integral formula is developed to determine the critical patch size when the Laplace dispersal kernel is used, and this formula shows existence of multiple equilibrium solutions. Numerical simulations are provided to demonstrate connections among the wave speed, critical patch size, and Allee threshold.

摘要

简化了具有强阿利效应和无界生境的积分差分方程的波速存在和正定性的条件。利用这些结果,得到了有界生境方程临界斑块大小的存在性。结果表明,如果波速为正,则存在一个临界斑块大小,使得在生境大小超过临界斑块大小时,解可以在空间中持续存在;如果波速为负,则解总是趋近于零。当使用拉普拉斯扩散核时,开发了一个解析积分公式来确定临界斑块大小,该公式表明存在多个平衡点解。提供了数值模拟来演示波速、临界斑块大小和阿利阈值之间的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验