Department of Mathematics, University of Louisville, Louisville, KY, 40292, USA.
Department of Mathematics, SUNY Cortland, Cortland, NY, 13045, USA.
Bull Math Biol. 2023 Nov 3;85(12):121. doi: 10.1007/s11538-023-01221-9.
We study a reaction-diffusion equation that describes the growth of a population with a strong Allee effect in a bounded habitat which shifts at a speed [Formula: see text]. We demonstrate that the existence of forced positive traveling waves depends on habitat size L, and [Formula: see text], the speed of traveling wave for the corresponding reaction-diffusion equation with the same growth function all over the entire unbounded spatial domain. It is shown that for [Formula: see text] there exists a positive number [Formula: see text] such that for [Formula: see text] there are two positive traveling waves and for [Formula: see text] there is no positive traveling wave. It is also shown if [Formula: see text] for any [Formula: see text] there is no positive traveling wave. The dynamics of the equation are further explored through numerical simulations.
我们研究了一个反应扩散方程,该方程描述了在以速度[Formula: see text]移动的有界栖息地中具有强烈阿利效应的种群的增长。我们证明了强制正行波的存在取决于栖息地的大小 L,以及[Formula: see text],即具有相同生长函数的整个无界空间域的相应反应扩散方程的行波速度。结果表明,对于[Formula: see text],存在一个正数[Formula: see text],使得对于[Formula: see text],存在两个正行波,而对于[Formula: see text],不存在正行波。还表明,如果[Formula: see text]对于任何[Formula: see text],则不存在正行波。通过数值模拟进一步探讨了方程的动力学。