Suppr超能文献

阴离子-非离子表面活性剂在油/水界面吸附的分子动力学模拟研究

Molecular dynamics simulation study of adsorption of anionic-nonionic surfactants at oil/water interfaces.

作者信息

Shi Peng, Luo Haibin, Tan Xuefei, Lu Yang, Zhang Hui, Yang Xin

机构信息

College of Materials and Chemical Engineering, Heilongjiang Institute of Technology Harbin 150026 People's Republic of China.

College of Chemical Engineering, Harbin Institute of Petroleum Harbin 150028 People's Republic of China

出版信息

RSC Adv. 2022 Sep 27;12(42):27330-27343. doi: 10.1039/d2ra04772a. eCollection 2022 Sep 22.

Abstract

Four anionic-nonionic surfactants with the same headgroups and different units of oxygen ethyl (EO) and oxygen propyl (PO) were adopted to investigate the influence on oil/water interfacial tensions in this article. Molecular dynamics (MD) simulations were conducted to study the interfacial property of the four surfactants. Four parameters were proposed to reveal the effecting mechanism of molecular structure on interfacial tension, which included the interfacial thickness, order parameter of the hydrophobic chain, radial distribution function, and the solvent accessible surface area. In addition, the electrostatic potential of the four surfactants was calculated. The research results indicated that the interface facial mask formed by the surfactants, which contained three EO or three PO units was more stable, and it was easier for the surfactants of six EO or six PO units to form a microemulsion at higher concentrations. The adsorption mechanism of the anionic-nonionic surfactant systems at the oil/water interfaces was supplemented at a molecular level, which provided fundamental guidance for an in-depth understanding of the optimal selection of the surfactants in enhancing oil recovery.

摘要

本文采用四种具有相同头基且氧乙烯(EO)和氧丙烯(PO)单元不同的阴离子 - 非离子表面活性剂,研究其对油/水界面张力的影响。进行了分子动力学(MD)模拟以研究这四种表面活性剂的界面性质。提出了四个参数来揭示分子结构对界面张力的影响机制,包括界面厚度、疏水链的序参数、径向分布函数和溶剂可及表面积。此外,还计算了这四种表面活性剂的静电势。研究结果表明,由含有三个EO或三个PO单元的表面活性剂形成的界面面膜更稳定,而六个EO或六个PO单元的表面活性剂在较高浓度下更容易形成微乳液。在分子水平上补充了阴离子 - 非离子表面活性剂体系在油/水界面的吸附机制,为深入理解表面活性剂在提高采收率方面的最佳选择提供了基础指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d599/9514088/ec1ec873aa96/d2ra04772a-f1.jpg

相似文献

1
Molecular dynamics simulation study of adsorption of anionic-nonionic surfactants at oil/water interfaces.
RSC Adv. 2022 Sep 27;12(42):27330-27343. doi: 10.1039/d2ra04772a. eCollection 2022 Sep 22.
2
Study on the Behavior of Saturated Cardanol-Based Surfactants at the Crude Oil/Water Interface through Molecular Dynamics Simulations.
J Phys Chem B. 2023 Oct 19;127(41):8938-8949. doi: 10.1021/acs.jpcb.3c05517. Epub 2023 Oct 10.
3
Effects of Micellization Behavior on the Interfacial Adsorption in Binary Anionic/Nonionic Surfactant Systems: A Molecular Simulation Study.
Langmuir. 2021 Oct 12;37(40):11835-11843. doi: 10.1021/acs.langmuir.1c01775. Epub 2021 Sep 29.
6
Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface.
Langmuir. 2021 Sep 14;37(36):10806-10817. doi: 10.1021/acs.langmuir.1c01731. Epub 2021 Aug 29.
7
Effect of branching on the interfacial properties of nonionic hydrocarbon surfactants at the air-water and carbon dioxide-water interfaces.
J Colloid Interface Sci. 2010 Jun 15;346(2):455-63. doi: 10.1016/j.jcis.2009.12.059. Epub 2010 Jan 11.
8
Effect of non-ionic surfactants on the adsorption of polycyclic aromatic compounds at water/oil interface: A molecular simulation study.
J Colloid Interface Sci. 2021 Mar 15;586:766-777. doi: 10.1016/j.jcis.2020.10.146. Epub 2020 Nov 5.

引用本文的文献

本文引用的文献

1
Effects of Micellization Behavior on the Interfacial Adsorption in Binary Anionic/Nonionic Surfactant Systems: A Molecular Simulation Study.
Langmuir. 2021 Oct 12;37(40):11835-11843. doi: 10.1021/acs.langmuir.1c01775. Epub 2021 Sep 29.
2
Oil solubilization in sodium dodecylbenzenesulfonate micelles: New insights into surfactant enhanced oil recovery.
J Colloid Interface Sci. 2020 Jun 1;569:219-228. doi: 10.1016/j.jcis.2020.02.083. Epub 2020 Feb 20.
3
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
4
An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0.
J Chem Theory Comput. 2011 Dec 13;7(12):4026-37. doi: 10.1021/ct200196m. Epub 2011 Nov 15.
5
Testing and validation of the Automated Topology Builder (ATB) version 2.0: prediction of hydration free enthalpies.
J Comput Aided Mol Des. 2014 Mar;28(3):221-33. doi: 10.1007/s10822-014-9713-7. Epub 2014 Jan 30.
6
Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures.
J Phys Chem B. 2013 May 9;117(18):5647-52. doi: 10.1021/jp309730m. Epub 2013 Apr 30.
7
Charge group partitioning in biomolecular simulation.
J Comput Biol. 2013 Mar;20(3):188-98. doi: 10.1089/cmb.2012.0239.
8
Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm.
J Mol Graph Model. 2012 Sep;38:314-23. doi: 10.1016/j.jmgm.2012.07.004. Epub 2012 Jul 27.
9
Molecular dynamics simulation of pyrene solubilized in a sodium dodecyl sulfate micelle.
Langmuir. 2012 Mar 20;28(11):4931-8. doi: 10.1021/la300146s. Epub 2012 Mar 8.
10
Multiwfn: a multifunctional wavefunction analyzer.
J Comput Chem. 2012 Feb 15;33(5):580-92. doi: 10.1002/jcc.22885. Epub 2011 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验