Suppr超能文献

计算纳米受限流体的热力学性质:加压甲烷的应用。

Computing Thermodynamic Properties of Fluids Augmented by Nanoconfinement: Application to Pressurized Methane.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.

Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.

出版信息

J Phys Chem B. 2022 Nov 3;126(43):8623-8631. doi: 10.1021/acs.jpcb.2c04347. Epub 2022 Oct 24.

Abstract

Nanoconfined fluids exhibit remarkably different thermodynamic behavior compared to the bulk phase. These confinement effects render predictions of thermodynamic quantities of nanoconfined fluids challenging. In particular, confinement creates a spatially varying density profile near the wall that is primarily responsible for adsorption and capillary condensation behavior. Significant fluctuations in thermodynamic quantities, inherent in such nanoscale systems, coupled to strong fluid-wall interactions give rise to this near-wall density profile. Empirical models have been proposed to explain and model these effects, yet no first-principles based formulation has been developed. We present a statistical mechanics framework that embeds such a coupling to describe the effect of the fluid-wall interaction in amplifying the near-wall density behavior for compressible gases at elevated pressures such as pressurized methane in confinement. We show that the proposed theory predicts accurately the adsorbed layer thickness as obtained with small-angle neutron scattering measurements. Furthermore, the predictions of density under confinement from the proposed theory are shown to be in excellent agreement with available experimental and atomistic simulations data for a range of temperatures for nanoconfined methane. While the framework is presented for evaluating the near-wall density, owing to its rigorous foundation in statistical mechanics, the proposed theory can also be generalized for predicting phase-transition and nonequilibrium transport of nanoconfined fluids.

摘要

与本体相比,纳米受限流体表现出显著不同的热力学行为。这些限制效应使得预测纳米受限流体的热力学量具有挑战性。特别是,限制在壁附近产生空间变化的密度分布,这主要负责吸附和毛细凝结行为。这种近壁密度分布源于纳米尺度系统中固有的热力学量的显著波动,以及强流体-壁相互作用。已经提出了经验模型来解释和模拟这些效应,但尚未开发出基于第一性原理的公式。我们提出了一个统计力学框架,嵌入这种耦合来描述流体-壁相互作用的影响,以放大在升高的压力下(例如在受限条件下的加压甲烷)可压缩气体的近壁密度行为。我们表明,所提出的理论准确地预测了小角度中子散射测量得到的吸附层厚度。此外,所提出的理论对受限条件下密度的预测与纳米受限甲烷的一系列温度下的可用实验和原子模拟数据非常吻合。虽然该框架是为评估近壁密度而提出的,但由于其在统计力学中的严格基础,所提出的理论也可以推广用于预测纳米受限流体的相变和非平衡输运。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验