Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA.
Chemosphere. 2023 Jan;311(Pt 1):136933. doi: 10.1016/j.chemosphere.2022.136933. Epub 2022 Oct 21.
The removal of poly- and perfluoroalkyl substances (PFAS) from the aquatic environment is a universal concern due to the adverse effects of these substances on both the environment and public health. Different adsorbents, including carbon-based materials, ion exchange resins, biomaterials, and polymers, have been used for the removal of short-chain (C < 6) and long-chain (C > 7) PFAS from water with varying performance. Metal-organic frameworks (MOFs), as a new generation of adsorbents, have also been recently used to remove PFAS from water. MOFs provide unique properties such as significantly enhanced surface area, structural tunability, and improved selectivity compared to conventional adsorbents. However, due to various types of MOFs, their complex chemistry and morphology, different PFAS compounds, lack of standard adsorption test, and different testing conditions, there are inconclusive and contradictory findings in the literature. Therefore, this review aims to provide critical analysis of the performance of different types of MOFs in the removal of long-chain (C > 7), short-chain (C < 6), and ultra-short-chain (C < 3) PFAS and comprehensively study the efficiency of MOFs for PFAS removal in comparison with other adsorbents. In addition, the adsorption mechanisms and kinetics of PFAS components on different MOFs, including Materials of Institute Lavoisier (MIL), Universiteit of Oslo (UiO), Zeolitic imidazolate frameworks (ZIFs), Hong Kong University of Science and Technology (HKUST), and other hybrid types of MOF were discussed. The study also discussed the effect of environmental factors such as pH and ionic strength on the adsorption of PFAS on MOFs. In addition to the adsorption process, the reusability and regeneration of MOFs in the PFAS removal process are discussed. Finally, challenges and future outlooks of the utility of MOFs for PFAS removal were discussed to inspire future critical research efforts in removing PFAS.
从水生环境中去除多氟和全氟烷基物质(PFAS)是一个普遍关注的问题,因为这些物质对环境和公众健康都有不利影响。不同的吸附剂,包括碳基材料、离子交换树脂、生物材料和聚合物,已被用于从水中去除短链(C < 6)和长链(C > 7)PFAS,性能各异。金属-有机骨架(MOFs)作为新一代吸附剂,最近也被用于从水中去除 PFAS。与传统吸附剂相比,MOFs 具有独特的性质,如显著增强的比表面积、结构可调性和提高的选择性。然而,由于各种类型的 MOFs、它们复杂的化学和形态、不同的 PFAS 化合物、缺乏标准的吸附测试以及不同的测试条件,文献中存在不一致和矛盾的发现。因此,本综述旨在对不同类型 MOFs 在去除长链(C > 7)、短链(C < 6)和超短链(C < 3)PFAS 方面的性能进行批判性分析,并综合研究 MOFs 与其他吸附剂相比去除 PFAS 的效率。此外,还讨论了不同 MOFs 对 PFAS 成分的吸附机制和动力学,包括 Institut Lavoisier(MIL)材料、奥斯陆大学(UiO)、沸石咪唑酯骨架(ZIFs)、香港科技大学(HKUST)和其他混合类型的 MOF。该研究还讨论了环境因素,如 pH 值和离子强度对 MOFs 上 PFAS 吸附的影响。除了吸附过程外,还讨论了 MOFs 在 PFAS 去除过程中的可重复使用性和再生性。最后,讨论了 MOFs 去除 PFAS 的实用性所面临的挑战和未来展望,以激发未来在去除 PFAS 方面的关键研究工作。