Dingel Kristina, Otto Thorsten, Marder Lutz, Funke Lars, Held Arne, Savio Sara, Hans Andreas, Hartmann Gregor, Meier David, Viefhaus Jens, Sick Bernhard, Ehresmann Arno, Ilchen Markus, Helml Wolfram
Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 73, 34121, Kassel, Germany.
Artificial Intelligence Methods for Experiment Design (AIM-ED), Joint Lab Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Berlin, Germany.
Sci Rep. 2022 Oct 24;12(1):17809. doi: 10.1038/s41598-022-21646-x.
X-ray free-electron lasers (XFELs) as the world's brightest light sources provide ultrashort X-ray pulses with a duration typically in the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena such as localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes has been, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time-energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence techniques, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics even at high-repetition-rate XFELs, thus enhancing and refining their scientific accessibility in all related disciplines.
X射线自由电子激光(XFEL)作为世界上最亮的光源,可提供持续时间通常为飞秒量级的超短X射线脉冲。最近,它们已接近并进入阿秒领域,这为单分子成像以及研究诸如局域电子动力学等非线性和超快现象带来了新的希望。然而,XFEL朝着用于超快过程精确计量的可控光源的技术发展,受到了阿秒前沿X射线脉冲表征诊断能力的阻碍。在这方面,光电子角条纹光谱技术已成功证明如何在单次基础上无损获取XFEL脉冲的确切时间-能量结构。通过使用人工智能技术,特别是卷积神经网络,我们在此展示了如何将该技术从原理验证阶段提升至即使在高重复率XFEL下的常规诊断,从而增强并完善其在所有相关学科中的科学可及性。