Suppr超能文献

XFEL 上超快蛋白质动力学的角分裂/时间延迟方法。

Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.

机构信息

Renz Research Inc., Westmont, IL 60559, USA.

Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.

出版信息

Acta Crystallogr D Struct Biol. 2016 Jul;72(Pt 7):871-82. doi: 10.1107/S2059798316008573. Epub 2016 Jun 23.

Abstract

X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.

摘要

X 射线晶体学有望直接洞察导致结构变化的电子密度变化,这些结构变化包括电子和质子转移以及化学键的形成、断裂和异构化。自由电子激光产生的硬 X 射线超短脉冲为在光激发后 femtosecond(飞秒,千万亿分之一秒)内捕获生物大分子中的超快结构事件提供了令人兴奋的机会。然而,自放大自发辐射(SASE)过程本身固有的 shot-to-shot 波动是噪声的主要来源,可能会掩盖结构变化的信号。在这里,提出了一种新的方法来对单个 SASE 脉冲进行角度分裂,并在分裂脉冲之间产生皮秒级的时间延迟。这些分裂脉冲将允许在分裂 X 射线脉冲之间的激光脉冲触发的光激发之前和之后探测两个不同的状态。分裂脉冲源自单个 SASE 脉冲,并具有许多共同的特性;因此,来自 shot-to-shot 波动的噪声是自相抵消的。明确解释超快结构变化需要原子分辨率的衍射数据,因为这些变化可能涉及或不涉及任何原子位移。这种方法与连续结晶学策略相结合,为在原子分辨率下研究光引发的生化反应或生物过程的超快动力学提供了一种解决方案。

相似文献

1
Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.
Acta Crystallogr D Struct Biol. 2016 Jul;72(Pt 7):871-82. doi: 10.1107/S2059798316008573. Epub 2016 Jun 23.
2
Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses.
Adv Exp Med Biol. 2024;3234:141-162. doi: 10.1007/978-3-031-52193-5_10.
3
Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130318. doi: 10.1098/rstb.2013.0318.
4
Radiation damage in protein crystallography at X-ray free-electron lasers.
Acta Crystallogr D Struct Biol. 2019 Feb 1;75(Pt 2):211-218. doi: 10.1107/S2059798319000317. Epub 2019 Jan 28.
5
A Bright Future for Serial Femtosecond Crystallography with XFELs.
Trends Biochem Sci. 2017 Sep;42(9):749-762. doi: 10.1016/j.tibs.2017.06.007. Epub 2017 Jul 18.
6
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources.
Methods Mol Biol. 2021;2305:203-228. doi: 10.1007/978-1-0716-1406-8_11.
7
Simulations of radiation damage as a function of the temporal pulse profile in femtosecond X-ray protein crystallography.
J Synchrotron Radiat. 2015 Mar;22(2):256-66. doi: 10.1107/S1600577515002878. Epub 2015 Feb 25.
8
Influence of pump laser fluence on ultrafast myoglobin structural dynamics.
Nature. 2024 Feb;626(8000):905-911. doi: 10.1038/s41586-024-07032-9. Epub 2024 Feb 14.
9
Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges.
Curr Opin Struct Biol. 2012 Oct;22(5):651-9. doi: 10.1016/j.sbi.2012.08.006. Epub 2012 Sep 25.
10
On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses.
ACS Nano. 2011 Jan 25;5(1):139-46. doi: 10.1021/nn1020693. Epub 2010 Dec 7.

引用本文的文献

1
Ultrafast Structural Changes Decomposed from Serial Crystallographic Data.
J Phys Chem Lett. 2019 Nov 21;10(22):7148-7163. doi: 10.1021/acs.jpclett.9b02375. Epub 2019 Nov 7.

本文引用的文献

1
Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.
Science. 2016 May 6;352(6286):725-9. doi: 10.1126/science.aad5081. Epub 2016 May 5.
2
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.
Struct Dyn. 2015 Aug 18;2(5):054302. doi: 10.1063/1.4928706. eCollection 2015 Sep.
3
Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation.
Science. 2015 Oct 23;350(6259):445-50. doi: 10.1126/science.aac5492. Epub 2015 Sep 10.
4
Towards time-resolved serial crystallography in a microfluidic device.
Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):823-30. doi: 10.1107/S2053230X15009061. Epub 2015 Jun 27.
6
The Linac Coherent Light Source.
J Synchrotron Radiat. 2015 May;22(3):472-6. doi: 10.1107/S1600577515005196. Epub 2015 Apr 21.
7
Electron transfer mechanisms of DNA repair by photolyase.
Annu Rev Phys Chem. 2015 Apr;66:691-715. doi: 10.1146/annurev-physchem-040513-103631.
8
High-intensity double-pulse X-ray free-electron laser.
Nat Commun. 2015 Mar 6;6:6369. doi: 10.1038/ncomms7369.
9
serial Laue diffraction on a microfluidic crystallization device.
J Appl Crystallogr. 2014 Nov 18;47(Pt 6):1975-1982. doi: 10.1107/S1600576714023322. eCollection 2014 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验