Suppr超能文献

基于机器学习预测 IgA 血管炎患儿的肾损伤。

Prediction of renal damage in children with IgA vasculitis based on machine learning.

机构信息

Shandong University of Traditional Chinese Medicine, Shandong, PR China.

出版信息

Medicine (Baltimore). 2022 Oct 21;101(42):e31135. doi: 10.1097/MD.0000000000031135.

Abstract

This article is objected to explore the value of machine learning algorithm in predicting the risk of renal damage in children with IgA vasculitis by constructing a predictive model and analyzing the related risk factors of IgA vasculitis Nephritis in children. Case data of 288 hospitalized children with IgA vasculitis from November 2018 to October 2021 were collected. The data included 42 indicators such as demographic characteristics, clinical symptoms and laboratory tests, etc. Univariate feature selection was used for feature extraction, and logistic regression, support vector machine (SVM), decision tree and random forest (RF) algorithms were used separately for classification prediction. Lastly, the performance of four algorithms is compared using accuracy rate, recall rate and AUC. The accuracy rate, recall rate and AUC of the established RF model were 0.83, 0.86 and 0.91 respectively, which were higher than 0.74, 0.80 and 0.89 of the logistic regression model; higher than 0.70, 0.80 and 0.89 of SVM model; higher than 0.74, 0.80 and 0.81 of the decision tree model. The top 10 important features provided by RF model are: Persistent purpura ≥4 weeks, Cr, Clinic time, ALB, WBC, TC, Relapse, TG, Recurrent purpura and EB-DNA. The model based on RF algorithm has better performance in the prediction of children with IgA vasculitis renal damage, indicated by better classification accuracy, better classification effect and better generalization performance.

摘要

本文旨在通过构建预测模型并分析儿童 IgA 血管炎相关的肾炎风险因素,探讨机器学习算法在预测儿童 IgA 血管炎肾损伤风险中的价值。收集了 2018 年 11 月至 2021 年 10 月期间 288 例住院儿童 IgA 血管炎的病例数据,包括人口统计学特征、临床症状和实验室检查等 42 个指标。采用单变量特征选择进行特征提取,分别采用逻辑回归、支持向量机(SVM)、决策树和随机森林(RF)算法进行分类预测。最后,通过准确率、召回率和 AUC 比较四种算法的性能。建立的 RF 模型的准确率、召回率和 AUC 分别为 0.83、0.86 和 0.91,均高于逻辑回归模型的 0.74、0.80 和 0.89;高于 SVM 模型的 0.70、0.80 和 0.89;高于决策树模型的 0.74、0.80 和 0.81。RF 模型提供的前 10 个重要特征是:持续紫癜≥4 周、Cr、就诊时间、ALB、WBC、TC、复发、TG、复发性紫癜和 EB-DNA。基于 RF 算法的模型在预测儿童 IgA 血管炎肾损伤方面表现更好,表现为分类准确率更高、分类效果更好、泛化性能更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2eb/9592501/5ef01ff1210b/medi-101-e31135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验